2021 Payment Threats and Fraud Trends Report

EPC193-21/Version 1.0 / Date issued: 24 November 2021

Public

© 2021 Copyright European Payments Council (EPC) AISBL:
This document is public and may be copied or otherwise distributed provided attribution is made and the text is not used directly as a source of profit
Abstract

This new edition of the threats trends report reflects the recent developments concerning security threats and fraud in the payments landscape over the past year.
Table of Contents

Executive Summary .. 5

1 **Document Information** ... 8

1.1 Scope and Objectives ... 8

1.2 Audience .. 8

1.3 References .. 8

1.4 Definitions and Abbreviations .. 9

2 **Threats and other Fraud Enablers** ... 14

2.1 Social Engineering .. 14

2.1.1 Impact and Consequences ... 14

2.1.2 Suggested Controls and Mitigation .. 15

2.2 Malware .. 16

2.2.1 Impact and Consequences ... 17

2.2.2 Suggested Controls and Mitigation .. 18

2.3 Advanced Persistent Threats (APT) ... 20

2.3.1 Impact and Consequences ... 21

2.3.2 Suggested Controls and Mitigation .. 23

2.4 Denial of Service (DoS) ... 25

2.4.1 Impact and Consequences ... 28

2.4.2 Suggested Controls and Mitigation .. 29

2.5 Botnets ... 30

2.5.1 Impact and Consequences ... 31

2.5.2 Suggested Controls and Mitigation .. 33

2.6 Monetisation Channels .. 33

2.6.1 Impact and Consequences ... 34

2.6.2 Suggested Controls and Mitigation .. 36

3 **Fraud per Payment-Relevant Process** ... 38

3.1 Introduction ... 38

3.2 On-boarding and Provisioning ... 38

3.2.1 Suggested Controls and Mitigation .. 40

3.3 Invoicing and Request-to-Pay ... 41

3.3.1 Suggested Controls and Mitigation .. 43

3.4 Payment Initiation & Authentication ... 44
3.4.1 Suggested Controls and Mitigation ... 44
3.5 Payment Execution .. 44
3.5.1 Suggested Controls and Mitigation ... 46

4 Fraud unique to Specific Payment Instruments .. 47
4.1 SEPA Schemes ... 47
 4.1.1 SEPA Credit Transfer (SCT) ... 47
 4.1.2 SCT Inst ... 49
 4.1.3 SDD (Core and B2B)... 49
 4.1.4 Supporting schemes ... 51
 4.1.5 Suggested controls and mitigations ... 51
4.2 Card Scheme .. 52
 4.2.1 Card present ... 52
 4.2.2 Card not present (CNP) .. 54
 4.2.3 Suggested Controls and Mitigation ... 56
4.3 Mobile Wallets ... 59
 4.3.1 Suggested Controls and Mitigation ... 60

5 Conclusions ... 62

List of tables
Table 1 Bibliography... 9
Table 2 Definitions .. 12
Table 3 Abbreviations ... 13
Table 4 Overview mitigation techniques used against APT attacks 24
Table 5 High-level dynamic DDoS security control framework 29
Table 6 Summary threats versus controls and mitigations ... 67

List of Figures
Figure 1: Classic money mule flow ... 34
Figure 2: Classic upscaled money mule flow ... 35

Annex
Annex I – Summary Threats versus Controls and Mitigations 66
Executive Summary

The overall purpose of the EPC is to support and promote European payments integration and development, notably the Single Euro Payments Area (SEPA). The EPC is committed to contribute to safe, reliable, efficient, convenient, economically balanced and sustainable payments, which meet the needs of payment service users and support the goals of competitiveness and innovation in an integrated European economy. It pursues this purpose through the development and management of pan-European payment and payment-related schemes and the formulation of positions and proposals on European payment issues in constant dialogue with other stakeholders and regulators at the European level and taking a strategic and holistic perspective. Since security is one of the cornerstones of customers’ trust in payment systems, the EPC decided to devote a yearly report to the latest trends in security threats impacting payments while also giving an insight on how these (could) lead to payment fraud and how to mitigate related risks. By developing this report, the EPC aims to enhance the security awareness amongst the various stakeholders in the payment ecosystem.

The document provides an overview of the most important threats and other “fraud enablers” in the payments landscape, including social engineering and phishing, malware, Advanced Persistent Threats (APTs), (Distributed) Denial of Service ((D)DoS), botnets and monetisation channels. For each threat, an analysis is made on the impact and context and suggested controls and mitigations are described. An overview matrix listing the threats with the main controls and mitigation measures is provided in Annex I.

The description of the threats is followed by a section that elaborates on how the identified threats impact the payment-relevant processes. The types of fraud related to specific payment instruments (cards, SEPA schemes - SEPA Credit Transfer, SEPA Direct Debit, SEPA Instant Credit Transfer - and mobile wallets) and supporting schemes such as SEPA Request-to-Pay, are described in the next section while conclusions are presented in the final section.

The following main conclusions concerning payment threats and fraud enablers may be derived from this report:

- Social engineering attacks and phishing attempts are still increasing and they remain instrumental often in combination with malware, with a shift from consumers, retailers, SMEs to company executives, employees (through “CEO fraud”), payment service providers (PSPs) and payment infrastructures and more frequently leading to authorised push payments (APP) fraud. These techniques have greatly evolved over the last years as the targets are users rather than technology.

- Awareness campaigns are still very important countermeasures against social engineering, and these campaigns should be coordinated, involving also public administrations. They should target individual and corporate customers, as well as employees. Service providers can implement techniques helping customers to verify that websites and emails are genuine and can provide customers with authenticators which do not expose sensitive information. The service providers can also implement protection mechanisms in their email infrastructure and take benefit from specialised services for closing down phishing websites.

- Malware – existing in various forms - remains a major threat, in particular ransomware has been on the rise during the past year, requiring new mitigating measures.

- Measures against malware include proper maintenance of own devices by the customers, including mobile devices (regularly update the operating system, use only needed
Service providers’ customer relations departments should inform their customers about these measures, and IT departments should implement adequate protection and control functions in their applications. Specific control and mitigation measures should also concern the usage of Cloud services by the PSPs.

- One of the most sophisticated and lucrative types of payment fraud now and for the future seems to be Advanced Persistent Threat (APT). It must be considered as a potential high risk not only for payment infrastructures but also for all network related payment ecosystems.

- Measures against APTs should start with security defense-in-depth strategy and architecture but must go beyond and include advanced security data analytics, technologies of early detection with real-time reporting and visualisation. Mechanisms to recognise APTs signs and patterns can also be effective.

- The number of (D)DoS attacks does no longer increase but they are still frequently targeting the financial sector. There is a continuation of botnets and because of the high volume of infected consumer devices (e.g. PCs, mobile devices, etc.) severe threats remain.

- Against DDoS attacks, PSPs can set up a dynamic security control framework, implement services to filter fraudulent traffic and mitigating measures against application level attacks. Testing the DDoS measures is also important, and this can include simulated attacks.

- Botnets can act as a force multiplier for malicious activity, including DDoS, using compromised systems from computers to IoT devices. Botnets are also a preferred means to mine crypto-currency drawing on the victim’s system computing power and electricity.

- For combating botnet threats various technical countermeasures can be adopted but regulatory and social countermeasures such as cybercrime dedicated laws, user awareness and enhanced cooperation, are also important.

- A fraudulent payment transaction is often followed by the use of a monetisation channel such as an immediate cash withdrawal, a purchase with no trace, a money transfer or a transfer to another account (“money mulling”).

- Raising awareness among customers, identification of “mules” combined with monitoring and stopping measures should be adopted as mitigation actions.

Attacks leading to fraud can occur in all payment-relevant processes: on-boarding/provisioning, E-invoicing/Request-to-Pay, initiation/authentication and execution. Often attacks are caused by exploiting a combination of several threats. Appropriate countermeasures depending on the threat type should be adopted:

- At onboarding and provisioning stage, attacks can target client information in an authoritative registry (e.g. postal address, mobile telephone number), make use of stolen credentials, and notably using SIM swapping.

- Invoicing and Request-to-Pay stages are particularly exposed to APP fraud or IBAN manipulation, including tampering of QR-codes.

- Initiation and Authentication are primarily exposed to malware attacks. Such attacks can be combined with social engineering (e.g. the customer is informed that a specific payment has been initiated, a payment has been erroneously received and should be reimbursed, etc.)
• Attacks at the payment execution stage focus on processing systems where the actual validation of the transaction and transfer of funds is executed. The most relevant type of at this stage attacks are via DDoS and APTs.

If the perspective of the analysis shifts from the payment processes to payment instruments and payment schemes, the following specificities may be observed:

• Concerning card payment fraud, criminals are changing their approach. Not only by changing to more high-tech frauds like APT, but also a part of the criminals is reverting to old school types of fraud such as lost and stolen, sometimes in combination with social engineering. As e-commerce is still on the rise, CNP fraud remains a significant factor for fraud losses.

• For SEPA Credit Transfer (SCT) and Direct Debit (SDD) transactions, the criminals’ use of impersonation and deception scams, as well as online attacks to compromise data, continue to be the primary factors behind fraud losses. Hereby criminals target personal and financial details which are used to facilitate fraudulent transactions. During the past year an increase in APP fraud is to be noted.

• For SEPA Instant Credit Transfer (SCT Inst), in addition to the threats targeting SEPA SCT, its specific features can be also exploited: immediate execution followed by immediate clearing and settlement with funds instantly made available to the beneficiary, and continuous processing on a 24/7 basis

• Supporting SEPA schemes (SPL and SRTP) are relatively new, meaning that it is too early to observe real-life fraud cases targeting them to draw any meaningful conclusions. It can be expected that the same patterns of threats and fraud enablers can affect them.

• Specific threats in the mobile wallet include targeted attacks on mobile device key stores, unlock credentials, user interfaces and NFC controllers.

Regardless the threats specific to particular schemes or payment processes, an important aspect to mitigate the risks and reduce the fraud is the sharing of fraud intelligence and information on incidents amongst PSPs.

It is also worthwhile mentioning that the EPC has established a new group on fraud related to the SEPA payment instruments, namely the Payment Scheme Fraud Prevention Working Group (PSFPWG). The aim is to contribute to operational payment fraud prevention by facilitating SEPA payment scheme fraud data collection and analysis, information sharing and prevention measures.

The European Commission has reviewed and extended the legislation on combating fraud and counterfeiting of non-cash means of payment ([7]).

Finally, PSPs must understand the emerging threats, the possible impacts and should keep investing in appropriate security and monitoring technologies as well as in customer awareness campaigns.
1 Document Information

1.1 Scope and Objectives
The present document aims to provide an insight in the latest developments on threats affecting payments, including cybercrime. It further provides an insight into the payments fraud resulting from criminal attacks. However, it does not endeavour to be a complete report on all criminal activities. It only attempts to create awareness on these matters to allow stakeholders involved in payments to decide on possible actions in this respect in order to maintain the trust in their payment solutions. Section 1 provides the references, definitions, and abbreviations used in this document. Section 2 describes threats and fraud enablers, generic to payment-relevant processes and payment instruments. Section 3 analyses threats which are exploited nowadays against payment-relevant processes and are contributing to fraud. Section 4 elaborates on fraud specific to payment instruments. The conclusions of this report may be found in Section 5. Annex I contains a summary of the threats and the main suggested controls and mitigation measures for each threat.

1.2 Audience
The document is intended for PSPs as well as for other interested parties involved in payments, such as:

- Third Party Service Providers
- Equipment manufacturers (POIs, consumer devices, etc.);
- Merchants and merchant organisations;
- Regulators;
- Standardisation and industry bodies;
- Payment schemes;
- Other interested stakeholders.

1.3 References
This section lists the main references mentioned in this document. Square brackets throughout this document are used to refer to a document in the list. Other references are included as footnotes throughout the document.

<table>
<thead>
<tr>
<th>Ref nr</th>
<th>Document</th>
<th>Author</th>
</tr>
</thead>
</table>
Table 1 Bibliography

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>

1.4 Definitions and Abbreviations

Throughout this document, the following terms are used.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>The provision of assurance that a claimed characteristic of an entity is correct. The provision of assurance may be given by verifying an identity of a natural or legal person, device or process.</td>
</tr>
<tr>
<td>Authorised Push Payment scam (APP scam)</td>
<td>This is fraud caused by a criminal who tricks their victim into transferring money directly from their account to an account which the criminal controls, whereby the victim authorises the payment themselves.</td>
</tr>
<tr>
<td>Automated Teller Machine (ATM)</td>
<td>An unattended physical POI that has online capability, accepts PINs, which allows authorised users, typically using machine-readable plastic cards, to withdraw cash from their accounts and/or access other services (e.g., to make balance enquiries, transfer funds or deposit money).</td>
</tr>
<tr>
<td>Beneficiary</td>
<td>See Payee</td>
</tr>
<tr>
<td>Black Box attack</td>
<td>Connection of an unauthorised device which sends dispense commands directly to the ATM cash dispenser, in order to “cash-out” or “jackpot” the ATM.</td>
</tr>
<tr>
<td>Cardholder</td>
<td>A customer who has an agreement with an issuer for a card payment service.</td>
</tr>
<tr>
<td>Card Not Present (CNP)</td>
<td>A card transaction with no physical interaction between the card and a POI at the time of the transaction, also referred to as a remote card transaction.</td>
</tr>
<tr>
<td>Consumer</td>
<td>A natural person who, in payment service contracts covered by the PSD2, is acting for purposes other than his or her trade, business or profession (see [1]).</td>
</tr>
<tr>
<td>Contactless Technology</td>
<td>A radio frequency technology operating at very short ranges so that the user has to perform a voluntary gesture in order that a...</td>
</tr>
<tr>
<td>communication is initiated between two devices by approaching them. It is a (chip) card, customer mobile device or mobile payment acceptance technology at a POI device which is based on ISO/IEC 14443.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Customer</td>
<td>A payer or a beneficiary which may be either a consumer or a business (merchant or a corporate).</td>
</tr>
<tr>
<td>Credential(s)</td>
<td>Payment account related data that may include a code (e.g., mobile code), provided by the PSP to their customer for identification/authentication purposes.</td>
</tr>
<tr>
<td>Credit transfer</td>
<td>A payment instrument for crediting a payee’s payment account with a payment transaction from a payer’s payment account by the PSP which holds the payer’s payment account, based on an instruction given by the payer (see [1]).</td>
</tr>
<tr>
<td>Digital wallet</td>
<td>A service accessed through a consumer device which allows the wallet holder to securely access, manage and use a variety of services/applications including payments, identification and non-payment applications (e.g., value added services such as loyalty, couponing, etc.). A digital wallet is sometimes also referred to as an e-wallet.</td>
</tr>
<tr>
<td>Direct debit</td>
<td>A payment instrument for debiting a payer’s payment account, where a payment transaction is initiated by the payee on the basis of the consent given by the payer to the payee, to the payee’s PSP or to the payer’s own PSP (see [1]).</td>
</tr>
<tr>
<td>Dynamic authentication/linking</td>
<td>An authentication method that uses cryptography or other techniques to create a one-per-transaction random authenticator (a so-called “dynamic authenticator”).</td>
</tr>
<tr>
<td>EMVCo</td>
<td>An LLC formed in 1999 by Europay International, MasterCard International and Visa International to enhance the EMV Integrated Circuit Card Specifications for Payments Systems. It manages, maintains, and enhances the EMV specifications jointly owned by the payment systems. It currently consists of American Express, Discover, JCB, MasterCard, Union Pay and VISA.</td>
</tr>
<tr>
<td>(Card) Acquirer</td>
<td>A PSP contracting with a payee to accept and process card-based payment transactions, which result in a transfer of funds to the payee.</td>
</tr>
<tr>
<td>(Card) Issuer</td>
<td>A PSP contracting to provide a payer with a payment instrument to initiate and process the payer’s card-based payment transactions.</td>
</tr>
<tr>
<td>In-app payment</td>
<td>These are payments made directly from within a mobile application (e.g., a merchant app). The payment process is completed from within the app to enhance the consumer experience.</td>
</tr>
<tr>
<td>Instant Credit Transfer</td>
<td>A form of Credit Transfer available 24/7/365 and resulting in the immediate or close-to-immediate interbank clearing of the transaction and crediting of the payee’s account.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Merchant</td>
<td>The beneficiary within a mobile payment scheme for payment of the goods or services purchased by the consumer. The merchant is a customer of their PSP.</td>
</tr>
<tr>
<td>Mobile Network Operator (MNO)</td>
<td>A mobile phone operator that provides a range of mobile communication services, potentially including facilitation of NFC services. The MNO ensures connectivity Over the Air (OTA) between the consumer and their PSP using their own or leased network.</td>
</tr>
<tr>
<td>Mobile wallet</td>
<td>A digital wallet accessed through a mobile device. This service may reside on a mobile device owned by the customer (i.e. the holder of the wallet) or may be remotely hosted on a secured server (or a combination thereof) or on a merchant website. Typically, the so-called mobile wallet issuer provides the wallet functionalities, but the usage of the mobile wallet is under the control of the customer.</td>
</tr>
<tr>
<td>Near Field Communication (NFC)</td>
<td>A contactless protocol for cards and mobile devices specified by the NFC Forum for multi-market usage. NFC Forum specifications are based on ISO/IEC 18092 but have been extended for harmonisation with EMVCo and interoperability with ISO/IEC 14443.</td>
</tr>
<tr>
<td>Payee</td>
<td>A natural or legal person who is the intended recipient of funds which have been the subject of a payment transaction (see [1]).</td>
</tr>
<tr>
<td>Payer</td>
<td>A natural or legal person who holds a payment account and allows a payment order from that payment account, or, where there is no payment account, a natural or legal person who gives a payment order (see [1]). Note: In case of card-based payments this may also be referred to as cardholder.</td>
</tr>
<tr>
<td>Payment account</td>
<td>An account held in the name of one or more payment service users which is used for the execution of payment transactions (see [1]).</td>
</tr>
<tr>
<td>Payment scheme</td>
<td>A single set of rules, practices, standards and/or implementation guidelines for the execution of payment transactions and which is separated from any infrastructure or payment system that supports its operation, and includes any specific decision-making body, organisation or entity accountable for the functioning of the scheme.</td>
</tr>
<tr>
<td>Payment Service Provider (PSP)</td>
<td>A body referred to in Article 1(1) of [1] or a natural or legal person benefiting from an exemption pursuant to Articles 32 or 33 of [1].</td>
</tr>
<tr>
<td>Payment transaction</td>
<td>An act, initiated by the payer or on his behalf or by the payee (beneficiary), of placing, transferring or withdrawing funds, irrespective of any underlying obligations between the payer and the payee (as defined in [1]).</td>
</tr>
<tr>
<td>Personal Identification Number (PIN)</td>
<td>A personal and confidential numerical code which the user of a payment instrument may need to use in order to verify their identity.</td>
</tr>
<tr>
<td>Point of Interaction (POI)</td>
<td>The initial point where data is read from a customer device or where consumer data is entered in the merchant’s environment or ATM. As an electronic transaction-acceptance product, a POI consists of</td>
</tr>
</tbody>
</table>
Table 2 Definitions

Throughout this document, the following abbreviations are used.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>Access Control Server</td>
</tr>
<tr>
<td>3DS</td>
<td>EMV® 3-D Secure Specifications</td>
</tr>
<tr>
<td>APT</td>
<td>Advanced Persistent Threat</td>
</tr>
<tr>
<td>ATA</td>
<td>Advanced Targeted Attacks</td>
</tr>
<tr>
<td>CEO</td>
<td>Chief Executive Officer</td>
</tr>
<tr>
<td>CERT</td>
<td>Computer Emergency Response Team</td>
</tr>
<tr>
<td>CSA</td>
<td>Cloud Security Alliance</td>
</tr>
<tr>
<td>CSDE</td>
<td>Council to Secure the Digital Economy</td>
</tr>
<tr>
<td>CSP</td>
<td>Cloud Service Provider</td>
</tr>
<tr>
<td>CVV</td>
<td>Card Verification Value</td>
</tr>
<tr>
<td>C&C</td>
<td>Command and Control</td>
</tr>
<tr>
<td>DoS</td>
<td>Denial of Service</td>
</tr>
<tr>
<td>DDoS</td>
<td>Distributed Denial of Service</td>
</tr>
<tr>
<td>DKIM</td>
<td>Domain Keys Identified Mail</td>
</tr>
<tr>
<td>DMARC</td>
<td>Domain-based Message Authentication, Reporting and Conformance</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System</td>
</tr>
<tr>
<td>DOTS</td>
<td>DDoS Open Threat Signalling</td>
</tr>
<tr>
<td>DVR</td>
<td>Digital Video Recorder</td>
</tr>
<tr>
<td>EBA</td>
<td>European Banking Authority</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ENISA</td>
<td>European Network and Information Security Agency</td>
</tr>
<tr>
<td>EPC</td>
<td>European Payments Council</td>
</tr>
<tr>
<td>FBI</td>
<td>Federal Bureau of Investigation</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>HSTS</td>
<td>HTTP Strict Transport Security</td>
</tr>
<tr>
<td>IBAN</td>
<td>International Bank Account Number</td>
</tr>
<tr>
<td>IDS</td>
<td>Intrusion Defense System</td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>IoT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPS</td>
<td>Intrusion Preventions System</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>KYC</td>
<td>Know Your Customer</td>
</tr>
<tr>
<td>OTP</td>
<td>One-Time Password/Passcode</td>
</tr>
<tr>
<td>OWASP</td>
<td>Open Web Application Security Project</td>
</tr>
<tr>
<td>OWASP MASVS</td>
<td>OWASP Mobile Application Security Verification Standard</td>
</tr>
<tr>
<td>PAN</td>
<td>Primary Account Number</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>SIEM</td>
<td>Security Information and Event Management</td>
</tr>
<tr>
<td>SIM</td>
<td>Subscriber Identification Module</td>
</tr>
<tr>
<td>SMS</td>
<td>Short Message Service</td>
</tr>
<tr>
<td>SPF</td>
<td>Sender Policy Framework</td>
</tr>
<tr>
<td>SWIFT</td>
<td>Society for Worldwide Interbank Financial Telecommunication</td>
</tr>
<tr>
<td>TPP</td>
<td>Third Party Payment Service Provider</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
</tbody>
</table>

Table 3 Abbreviations
2 Threats and other Fraud Enablers

2.1 Social Engineering

Social engineering is an attack vector that exploits human error to gain private information, access, or valuables. In social engineering, the attackers can employ a variety of techniques to manipulate unsuspecting customers, employees or third parties into exposing data, spreading malware infections, or giving access to restricted systems.

In a corporate context, social engineering attacks often seek to gather and exploit information about the target organisation’s business processes, decision-making structures, and any underlying gaps of control deficiencies that could facilitate CEO fraud, business email compromise, or any other kind of business process fraud.

Social engineering attempts can take place online across many channels, including email, SMS, phone calls and social media, in-person, and via other interactions. Attackers often prefer social engineering over more technology-oriented attacks because they are scalable, inexpensive, and more difficult to attribute to a specific actor.

The goals of social engineering attacks vary. Social engineer may be used to gain access to data or systems via tricking users into exposing their credentials (phishing) or their systems (as covered in the malware Section 2.2) but they may also be used to gain a direct access to financial resources via manipulating users into initiating themselves payments to accounts controlled by the attacker (authorised push payment fraud) or even to encrypt the target’s data for subsequent extortion purposes.

Social engineering attacks further range from mass email attempts that can be more or less easy to identify as an attempt to defraud a customer, to dedicated emails or voice calls that target a specific customer or employee (spear phishing).

Details on fraud caused by social engineering on payment-relevant processes and specific payment instruments, may be found in Sections 3 and 4.

2.1.1 Impact and Consequences

Social engineering techniques have greatly evolved over the last years as attackers increasingly target users rather than technology. All types of social engineering attacks continue to be used by attackers of varying levels of capabilities, with a particular increase in business email compromise and phishing emails that result in malware being deployed on computers.

Phishing plays a key role in carrying out targeted digital attacks. Some users are not able to recognise phishing emails. However, the implementation of DMARC by organisations to stop phishing emails have experienced a quite big take-up in some countries and have proven to be successful\(^1\). Nevertheless, phishing continues to be a low-threshold and effective method for attackers.

Large scale phishing can be enabled by using Botnets as instruments for amplifying the extent and intensity of attacking campaigns. More details about botnets will be given in Section 2.5.

\(^1\) https://hmrdigital.blog.gov.uk/2016/11/25/combatting-phishing-a-very-big-milestone/
2.1.2 Suggested Controls and Mitigation

Awareness campaigns are still very important countermeasures against social engineering. Following are some examples of messages:

- “Never give away your personal data, password or OTPs to someone who calls.”
- “Do not click on links on e-mails, directly visit the PSP website instead.”
- “Double check any payment information received by e-mail with the legitimate sender by a different means.”

It is important to denote that this advice is important, no matter who the caller or sender claims to be or how urgent the caller says it is.

The warning against phishing is simple, but to get the message through and enable customers to comply in stressed situations is not simple. PSPs need to have a proper customer education system in place, not only addressing individual clients but also including SMEs and large corporates, explaining the risks in layman words. In some countries coordinated campaigns are being set up where the financial industry cooperates with public or semi-public agencies. In addition, it is as important for companies and organisations (including PSPs) to also adequately educate and create awareness amongst their own staff.

The customer’s possibility to determine whether an email or website is genuine should be supported by service providers by ensuring that

- Login screens only occur in https sessions using certificates with Extended Validation.
- Websites consistently use the same easy-to-recognise domain names / URLs.
- Websites support HSTS.
- Emails to customers never contain links to login screens asking for passwords etc. or other sensitive information.

The sender of phishing emails will typically like to spoof the domain name of a PSP or other trustworthy entity. Such organisations may try to prevent this by implementing the following countermeasures:

- Sender Policy Framework (SPF), which is an email-validation system designed to detect email spoofing.
- Domain Keys Identified Mail (DKIM), which is an email authentication method designed to detect email spoofing by providing receiving mail exchangers to check that the incoming mail from a domain is authorised to be sent by that domain’s administrators.
- Domain-based Message Authentication, Reporting and Conformance (DMARC) which is an email-validation system designed to detect and prevent email spoofing. DMARC is built on top of the existing mechanisms mentioned before, SPF and DKIM and enables the blocking of spoofed mails.

An inherent countermeasure against phishing is to provide the user/customer with an authenticator, which does not expose any information of the user. Hence, the user cannot expose

2 see for instance: https://www.gov.uk/government/publications/email-security-standards/domainkeys-identified-mail-dkim

any credentials, but social engineering may still be used to trick the user in unintentionally
authorising third-party access.

Private companies – working in close cooperation with telecom operators - offer takedown of
phishing websites as a service. Such companies might be able to limit access to and finally stop
phishing sites. In addition, it might also be possible sometimes to collect stolen data from phishing
servers. The victim’s PSP might then be able to reduce the consequences by contacting the
customer and blocking the card or compromised authenticator.

2.2 Malware

Malware, short for malicious software, is an umbrella term used to refer to a variety of forms of
hostile or intrusive software. Cybercriminals design malware to compromise computing functions,
to steal data, to bypass access controls, and to cause harm to host computers, customer devices
and their applications or data.

One of the major threats against cyber security today is malware. Malware comes in a wide range
of flavours, such as viruses, worms, remote access tools, rootkits, Trojans, spyware and adware.
Malware exploits software vulnerabilities in browsers, third party software and operating systems
to gain access to the device and its information and resources. To spread, malware uses also social
engineering techniques to trick users into installing and running the malicious code.

- **Trojan horse** - It is maybe the largest category of the malware family. It consists of a large
 variety of exotic names. However, they all have one thing in common; they bypass the
 security measure on the system to infect it. Their main purpose is stealing valuable
 information from the system and gaining control of the system itself. Trojans are also used
to get an initial foothold and download other malware.

- **Spyware, Adware & Banking Trojans** - Spyware and adware, which are categorised as
 malware, are less dangerous for the users. Spyware is often classified into the following
categories, *browser hijackers, tracking cookies* and *system monitors* (key-logging, take
 screenshots, record voice). In some cases *adware* is seen as the fourth category of
 spyware. These types of malware are all trying to track and store the usage and behaviour
 of users, serving them with pop-up ads when connected to the Internet. Based on the
 same approach, attackers are installing malware (Banking Trojan) targeting the victim
 while using e- or m-banking services. Banking Trojans are capable of hijacking the browser
 and tampering financial transactions or stealing user credentials during the use of e- or m-
banking services. Banking Trojan can also be sent through weaponised attachments in an
 e-mail or infected software.

- **Ransomware** - Is a type of malicious software designed to encrypt files on the device or
deny access to the device, which is the reason for it to be also known as cryptoware. It
holds data up for ransom, blackmailing the user to pay a ransom to get back their data or
access to their device. A surprising fact is that this kind of attacks seems to be more
profitable to the attackers than the traditional banking Trojans.

- **Remote Access Trojans (RATs)** - A Remote Access Trojan is a piece of malware that allows a
remote actor to control a system as if they have physical access to it. Use of a RAT may
provide cybercriminals with unlimited access to the victims’ computers. Using the victim’s
access privileges, the RAT can perform critical functions or steal sensitive data. RAT
technology is also commonly used by APTs (see Section 2.3) to bypass strong
authentication and get access to important data.
• **RATs for Mobile** - More recently RATs like Vultur\(^4\) have surfaced also in the mobile space, exploiting Android’s accessibility services in combination with standard remote access functionality. By leveraging a dropper or tricking the user in installing such an app and granting it accessibility rights, fraudsters get full remote control over the mobile’s user interfaces, i.e., can easily spy on input/output to gather credentials but can also easily reinject captured data or push buttons upon request by a specific service or authentication app they would like to remote control. No mobile rooting is required for this to work.

• **Fileless malware (also known as non-malware)** - Fileless malware is a malicious code that does not need a file or script in order to operate. It takes advantage of existing vulnerabilities of the Operating System. It exists exclusively in a computer’s RAM and uses system tools to inject malicious code into trusted processes. It is more difficult to prevent, detect and remove, as it does not leave a file for an antivirus software to detect. Hackers can steal data or install other forms of malware to give it persistence or hide it in some other trusted processes or internal persistent data. This way, it can set up scripts that run when the system restarts to continue the attack.

As organisations continue to migrate on-premises services and applications to the cloud or to externalise them to third parties, it is reasonable to deduce that these external resources will also suffer fraud threats and risks. Therefore, they become new targets of exposure to malwares and APTs.

2.2.1 Impact and Consequences

Whether the infection is targeting a private user, an SME or a multinational company the effects of a successful malware attack can cause significant damage, and every prevention and mitigating method should be utilised.

As an example, in May 2017 the WannaCry\(^5\) ransomware malware strain gained infamy by crippling entire networks, across more than 150 countries, with hundreds of thousands of Windows computers infected.

In the case of PSPs, all necessary steps to prevent ransomware attacks should be taken. Ransomware attacks could involve encrypting of payment information, PANs and other information necessary for PSP business execution.

Ransomware has typically no impact on the users’ banking credentials. Instead, by making use of banking Trojans, fraudsters have managed to extort a significant amount of money from users.

For private users spyware and adware are a large threat towards their privacy, as this type of malware looks for patterns of the users and tries to profile their individual behaviour for monetisation purposes. Similar things might happen for companies, but normally this type of malware targets individual behaviour, in fact it is their goal to group the individual by their own definitions, it is therefore not a direct threat towards corporate users.

Malwares normally search the infected machine for all information that can be monetised; for private users this is typically credentials related to e- or m-banking (mobile and web). Credit card credentials are of similarly high value. For private users the amount of information that can be sold to other parties is relatively small. Such information is easier to find in companies as each company retains databases of customer information or intellectual property, information which

can be used to blackmail or to give an advance in a competitive market. The above case has a significant impact in larger organisations or even governmental organisations where information is one of the most valuable assets.

2.2.2 Suggested Controls and Mitigation

User Controls and Mitigation

To prevent malware attacks, users should

- First minimise the number of installed programs on their device (and from trusted resources only), as the number of vulnerabilities will decrease accordingly.
- Secondly, one of the best ways to ensure that the system or device do not become infected with malware is to regularly update the installed software – especially the Operating System, which often release new versions to mitigate newly found vulnerabilities – and to remove software that does no longer have any use.
- An advice would however be to utilise specialised software to remove and protect against adware, as the latter also could utilise specialised software to remove and protect against adware.

Related specifically to Mobile devices, users should implement some measures to mitigate the threats related to mobile devices, these include:

- Update the software running on your mobile device with the latest security patches and upgrades, these should be sent to you by your network / operating system provider.
- Use a secure lock screen, set a password, PIN or fingerprint to unlock your device.
- Do not allow applications to be installed from unknown / untrusted sources.
- Do not jailbreak or root your devices.
- Add a PIN or passcode to the voicemail on your mobile device.
- Do not use a PIN code which is your date of birth or which is part of an otherwise well-known information.
- Install anti-virus software on your mobile device.

PSP Controls and Mitigation

PSPs’ departments dealing with customer relations should use every opportunity to inform their customers that it is very important to keep their software updated, and hence reduce the risk for malware infection significantly.

Mobile payment service providers should:

- Create awareness campaigns to educate consumers on how to avoid the previous explained fraud scenarios;
- Monitor app stores and Internet for fake applications;
- Implement anti-tampering and integrity controls in app;
- Associate jailbroken or rooted devices with a higher fraud score;
- Protect app code with code signing and obfuscation;
- Implement strong sensitive data encryption on device;
- Perform application penetration testing;
- Do not consider frequently used third-party libraries as secure and validate them before using them;
• Implement controls to protect communication channel (such as certificate pinning) to ensure an app will only communicate with a trusted party;
• Implement app as personalised and prevent transfer of personalised app to another device;
• Implement device owner/user verification as well as mobile device verification;
• Use always two-factor authentication, which should be implemented in a user-friendly way;
• Establish secure mobile payment app enrolment procedures, which cannot be circumvented by vishing and/or other social engineering scams;
• Check vulnerabilities based on the OWASP MASVS list.

Service Providers or PSP IT departments Controls and Mitigation

Service providers’ or PSPs’ internal IT departments should implement measures such as:

• Script blockers, so that the device becomes less exposed to the risk, and therefore the risks of infections are smaller.
• All critical files should be regularly backed up so that they can be recovered in the case of unauthorised alteration, encryption, or destruction.
• Monitoring of files/software (executables) behaviour can help to block certain threats such as ransomware. This is generally referred to as “malware behaviour blocking”\(^6\).
• Limited use of administrative rights; this is mostly applied by companies and security aware users, as most users would not see the benefit of it in their everyday needs. Firewall and antivirus on consumer devices should be regularly updated. It is also strongly recommended to enable further controls provided by the endpoint security mechanisms, such as the IPS/IDS capability on the device\(^7\), when applicable.
• Ensure that macros cannot run on the systems while opening attachments or documents in general. This is typically the case for most large companies, however smaller companies and private users largely depend on the patches that are automatically installed by the office suite software provider as they do not understand the threat. Allowing the execution of only signed macros can be the solution to securely exclude malware without losing functionality or breaking business needs.
• Consider the use of Web isolation technologies in order to let potential threats run in a secure environment (sandbox).

Controls and Mitigation specific for the usage of Cloud services

Before using a cloud service, a PSP must identify assets (data, applications, infrastructure) and evaluate them (criticality, classification) and define the appropriate security controls. Then they should choose an appropriate cloud deployment model and define whether and how the data can move in and out of the cloud. Finally, there should be a due-diligence process to evaluate the service provider regarding security, privacy, availability and their SLA.

\(^7\) Intrusion Prevention Systems / Intrusion Defense Systems are security mechanisms deployed on servers or devices which monitor in real-time for entries representing a security violation. Some common abilities of such mechanisms include integrity checking, policy enforcement, rootkit detection, detection of variations in system configuration. They offer the ability to identify intrusion attempts and actively prevent malicious or anomaly activity on the host system. IPS/IDS could be deployed at the network level too.
• Cloud governance including a risk-based analysis approach, based on international standards such as NIST, ISO 2700x, COBIT or PCI-DSS as well as continuous monitoring of the implemented controls are first steps to mitigating or reducing the fraud risks.

• Of equal importance is the regular execution of a security audit to verify the cloud provider’s conformity to the security requirements through the whole lifecycle of the application.

• PSPs must always have the control over their data, security included. For example, when encryption is used for data privacy, PSPs must have control over the key management and not the cloud provider. Also, where technically possible, the authentication mechanism should always be controlled by the company and not by the cloud provider.

2.3 Advanced Persistent Threats (APT)

An Advanced Persistent Threat is a sophisticated, targeted, malicious attack aimed at a specific individual, company, system or software, based on some specific knowledge regarding the target. It pursues its objectives repeatedly over an extended period of time, adapts to defenders’ efforts to resist and is determined to maintain the level of interaction needed to execute its objectives.

The term APT originated in the U.S. Department of Defense late in the first decade of the 21st century to describe cyberespionage efforts by China against American national security interests. APTs, according to Symantec’s detailed report on the subject, are different from other targeted attacks in the following ways:

• Customised attacks - In addition to more common attack methods, APTs often use highly customised tools and intrusion techniques, developed specifically for the campaign. These tools include zero-day vulnerability exploits, viruses, worms, and rootkits. In addition, APTs often launch multiple threats or “kill chains” simultaneously to breach their targets and ensure ongoing access to targeted systems, sometimes including a "sacrificial" threat to trick the target into thinking the attack has been successfully repelled.

• Low and slow - APT attacks occur over long periods of time during which the attackers move slowly and quietly to avoid detection.

• Higher aspirations - Unlike the fast-money schemes typical for more common targeted attacks, APTs are designed to satisfy the requirements of international espionage and/or sabotage, usually involving covert state actors. The groups behind APTs are well funded and staffed; they may operate with the support of military or state intelligence.

• Specific targets - Widely reported APT attacks have been launched at government agencies and facilities, defense contractors, and manufacturers of products that are highly competitive on global markets. In addition, APTs may attack vendor or partner organisations that do business with their primary targets. Ordinary companies with valuable technology or intellectual property and financial institutions managing their clients’ valuable assets are now being targeted by nation states.

8 National Institute of Standards and Technology (NIST), Special Publication 800-39, Managing Information Security Risk, Organization, Mission, and Information System View, USA, 2011

9 https://www.britannica.com/topic/advanced-persistent-threat

APT attacks can often be seen as an outstanding category of malware. Attackers demonstrate a continuously improving set of skills, in bypassing security mechanisms, providing often a state-of-the-art attack that changes the roadmap and trends of the security industry. This is also known as zero-day attacks, since no normal signatures exist from the antivirus / antimalware tools.

The APT attacks are often executed following a structured approach. Experts have identified typical stages of an attack starting with the selection of the target, going through the information gathering, gaining access to the target, exploitation and operation, and terminating with data discovery, collection and exfiltration.\(^\text{11}\)

APT attacks can further be recognised by special signs that hackers leave behind. Over the past two decades, Roger Grimes discovered the following five signs most likely to indicate that a company has been compromised by an APT\(^\text{12}\):

- *Increase in elevated logons late at night*
- *Widespread backdoor Trojans*
- *Unexpected information flows*
- *Unexpected data bundles*
- *Focused spear-phishing campaigns*

APT attacks may target financial institutions with the aim to compromise the network or payment system e.g., to perform unauthorised transactions and steal money.

More details on fraud caused by APT on payment processes and specific payment instruments, may be found in the Section 3 and 4.

2.3.1 Impact and Consequences

The APT’s single-minded persistence on pursuing its target and repeated efforts to complete the job for which it has been created with malicious intent, makes that the attack will not go away after one failed attempt. It will continually attempt to penetrate the desired target until it meets its objective.

In recent years not only criminal but also state organised APT attacks have been seen around the globe, targeting financial institutions. Although parties like Europol and Interpol have done proper jobs with arresting gang members, criminal organisations such as Cobalt and Carbanak have been very active in 2018 attacking financial institutions. Cobalt, spreading SpicyOmelette malware in campaigns targeting financial institutions worldwide have been connected to the theft of millions of dollars and is believed to have caused over €1bn in damages. Carbanak alone is claimed to have managed to steal at least $1bn from banks worldwide. Modus operandi from these gangs varies by doing field research on the financial institutions to spear phishing on staff members with email infected with malware.

\[
\text{APT38 is a financially motivated group linked to North Korean cyber espionage operators, renowned for its attempt to steal hundreds of millions of dollars from financial institutions through the brazen use of destructive malware. APT38 executes sophisticated bank heists that typically feature long planning, extended periods of access to victim environments preceding any attempts to steal money, fluency across mixed operating systems, the use of custom}\]

developed tools and constant effort to thwart investigations capped with a willingness to destroy compromised machines. APT38 has compromised more than 16 organisations in at least 13 different countries, sometimes simultaneously, since at least 2014. Victimised organisations tend to be in developing economic regions. Although APT38 focuses almost exclusively on the financial sector, its bank heists are reminiscent of sophisticated espionage campaigns. APT38 continues to conduct phishing activity against Bitcoin and other cryptocurrency-related financial services.
Another APT group “Lazarus” is linked to the Redbanc cyberattack. The attack involved PowerRatankba, a malware toolkit with ties to the APT group. “It represents the latest known example of Lazarus-affiliated tools being deployed within financially motivated activity targeted toward financial institutions in Latin America”, FlashPoint researchers said in a blog post\(^\text{13}\). The intrusion reportedly occurred when the malware was delivered via a trusted Redbanc IT professional who clicked on a link to apply for a job opening found through social media. The applicant was ultimately and unwittingly tricked into executing the payload, researchers said. “Lazarus attacks appear to reportedly rely on social media and trusted relationships, which may elevate their abilities to execute and install their payloads,” the post said.

GootKit is a notable APT\(^\text{14}\) example for its evasiveness and the stealthy way it steals confidential data and sends it back to the operators of its Command and Control (C&C) server. Primarily targeting European bank account holders, the malware has been known to capture videos of victims’ desktops and dynamically inject fraudulent web content into the browsing sessions of users when they attempt to access their banking websites. To prevent detection by security tools, it checks for the presence of virtual machines that may be used by cybersecurity researchers to study the malware’s behaviour.

2.3.2 Suggested Controls and Mitigation

APT is deemed a serious threat because of its nature to stay undetected for a long duration. APT malware is designed to evade detection from conventional perimeter security defenses (firewalls, IDS, IPS, endpoint protection platforms and secure Web gateways) used by most organisations. APT mitigation and detection capabilities need to be incorporated in a security defense-in-depth strategy and architecture, to protect enterprises from attacks of this complexity. The traditional defense-in-depth components are still necessary but are no longer sufficient in protecting against advanced targeted attacks and advanced malware.

Clearly, no single security control is able to provide effective, efficient protection, states Gartner, an IT research and advisory firm, noting that Advanced Targeted Attacks (ATAs) and advanced malware continue to plague enterprises. An APT defiance strategy needs to include real-time advanced security data analytics that can identify patterns of invasive behaviour and threat intelligence for detection-remediation-prosecution or attribution to stop attacks during an early stage.

Today’s APTs are well coordinated, organised, and methodical, which makes them particularly difficult to detect by network security administrators, as many APTs use custom-developed code and/or target zero-day vulnerabilities. Nonetheless, by using technologies of early detection with real-time reporting and visualisation, network security administrators can try to perceive penetration as it happens before it disappears through the components of the system. Also, incorporating security threat intelligence into infrastructures and utilising best-practice mechanisms and procedures may help find the malware carefully hidden by cybercriminals inside enterprise networks.

To confront such cyber-attacks will require system users to evaluate weak links in their infrastructure and employ defence controls that may recognise signs that something appears out

\(^{13}\) See https://www.flashpoint-intel.com/blog/disclosure-chilean-redbanc-intrusion-lazarus-ties/

\(^{14}\) See e.g. https://www.sentinelone.com/blog/gootkit-banking-trojan-deep-dive-anti-analysis-features/
of place. IT security managers need to look for patterns of events characteristic of APT methodologies. There are many proposed methods for mitigating APT, a few common methods and the statistics classifying the methods employed by 25 researchers\(^\text{15}\) are highlighted in the following table:

<table>
<thead>
<tr>
<th>No.</th>
<th>Mitigation Techniques</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Traffic/ Data analysis</td>
<td>30%</td>
</tr>
<tr>
<td>2</td>
<td>Pattern Recognition</td>
<td>21%</td>
</tr>
<tr>
<td>3</td>
<td>Anomaly Detection</td>
<td>16%</td>
</tr>
<tr>
<td>4</td>
<td>Awareness</td>
<td>7%</td>
</tr>
<tr>
<td>5</td>
<td>Whitelists</td>
<td>5%</td>
</tr>
<tr>
<td>6</td>
<td>Cryptography</td>
<td>5%</td>
</tr>
<tr>
<td>7</td>
<td>Multi-layer security</td>
<td>5%</td>
</tr>
<tr>
<td>8</td>
<td>Blacklists</td>
<td>3%</td>
</tr>
<tr>
<td>9</td>
<td>Deception</td>
<td>2%</td>
</tr>
<tr>
<td>10</td>
<td>SIEM</td>
<td>2%</td>
</tr>
<tr>
<td>11</td>
<td>Intrusion Detection System (IDS)</td>
<td>2%</td>
</tr>
<tr>
<td>12</td>
<td>Risk assessment</td>
<td>2%</td>
</tr>
</tbody>
</table>

Table 4 Overview mitigation techniques used against APT attacks

Tools such as a SIEM solution try through security logs to detect any unauthorised or suspicious object access, or else OSSEC\(^\text{16}\) and honeypots can detect host-based attacks on computers and allow early detection of APT behaviour. Also, they can find any cyber-attacks that bypass signature-based tools and common sandboxes.

Turning the table on attackers, deception technology lures attackers into attacking fake servers, services and many other networked IT resources that are found in the typical enterprise network. When attackers waste time and energy attempting to exfiltrate valuable data, security researchers gather valuable information about the methods they use, including insights into an attacker’s kill chain, and adjust their network defenses accordingly.

To be able to effectively defend against today’s new breed of cyber adversaries, and be able to counter APT and protect data from inappropriate access, it requires – apart from taking standard security countermeasures e.g. security hardening and patching of systems, and minimising the attack surface - strengthening existing authentication flaws (password weaknesses) and properly utilising proprietary security hardware/software. An advanced IP scanner application, for example, can help clean any form of malware, including spyware; whereas an APT scanner device that focuses on the detection of attacker activity can be of use should antivirus software and firewalls fail.

Furthermore, to test existing defenses and prepare advanced security preparedness, security professionals use the Red Team / Blue Team approach (used also by the military to test force-readiness) to identify vulnerabilities as part of the offensive attack activities, determine areas for improvement in the defensive incident response processes, identify opportunities to improve prevention and detection capabilities and develop response and remediation activities to return the IT landscape to a secure status. The Red Team is an independent internal or third-party group that assesses the organisation security readiness, tests active controls and countermeasures.

\(^{16}\) https://www.ossec.net/
within a given operational environment and validate security defenses as well as the ability of internal security resources to detect and respond to advanced security threats. The Blue Team consists of internal security resources with the mission to defend the operating environment against real or simulated cyberattacks over a significant period of time by the Red Team. This is accomplished by emulating the behaviours and techniques of likely attackers in the most realistic way possible. Based on the simulation findings, recommendations are provided to increase the organisation’s cybersecurity readiness posture.

To support the cybersecurity professionals in their fight against Advanced Targeted Attacks, known as ATAs, Gartner has developed the Five Styles of Advanced Threat Defense Framework. These styles are: network traffic analysis, network forensics, payload analysis, endpoint behaviour analysis, endpoint forensics, and can be used in combinations for a more effective approach.

2.4 Denial of Service (DoS)

Distributed Denial of Service, or DDoS, involves crippling the systems of an organization usually customer facing websites by flooding the website systems with large amounts of malicious digital traffic. These attacks are usually carried out by low tier threat actors as they are widely available for purchase on the internet dark web. Although the impact on the stability of a targeted financial institution is limited, it can result in reputational damage for the institution and/or may hinder customer service. DDoS is deployed by actors across the entire actor spectrum, ranging from a script kiddy using a DDoS attack, to advanced threat actors using DDoS as a smoke screen for other stages of their attack.

DDoS attacks are one of the oldest internet cyberweapons used today by everyone from hacktivists and governments to disgruntled video game players and thrill-seekers purely for personal enjoyment. At the end of the last century, DDoS attacks were performed as a form of vandalism and without a clear strategy. This changed at the beginning of this century, and DDoS attacks now have specific objectives. They are used, for instance, to blackmail organisations for money or to protest against a country or organisation based on ideological motives. DDoS attacks are more and more often a modern form of protest. The attacks disrupt access to web sites and servers or take them offline completely by using co-opted online resources such as zombie PCs and servers or Internet of Things (IoT) bot networks that flood and overwhelm victims with online traffic. DDoS attacks are performed by many – sometimes hundreds of thousands – nodes at the same time, grouped in “botnets”. In 2016 malware was released to incorporate IoT (Internet of Things) devices in DDOS botnets. IoT will dramatically increase the number of connected devices which are poorly patched. Therefore IoT could give DDoS attackers an unprecedented DDoS bandwidth.

The ease for criminals, “script kiddies”, etc. to prepare and execute a DoS attack is increasing. It is relatively easy and not expensive to buy or rent attack capabilities on the Internet. Two categories of perpetrators may be distinguished: “old school hackers” or “hacktivists” who just want to have a name or defend an ideology and the “hackers that essentially pursue financial gain”. The latter ones use all means, human or technical failure, available to create blackmail or massive fraud. Moreover, DoS attacks are also used to conceal other attacks and distract the defenders.

According to security companies, trends in DDoS are remarkably stable. The sizes of the largest attacks have grown by approximately 6% on an annual basis, with occasional outliers like the Mirai botnet.

Note that a DDoS attack has a potential for collateral damage – where other components than the originally targeted for DDoS are also impacted and potentially taken down.

Distinction can be made between four basic types of DDoS attacks:

- **The flooding attack** - The term ‘flood’ is a collective term used to describe the most basic form of DDoS attacks, namely those attacks that focus on making it impossible to gain access to a system or service, by exceeding the maximum bandwidth available. Exceeding the maximum available bandwidth means there is not enough bandwidth left for the legitimate data traffic.

 A special form of a flooding attack is the so-called amplification attack, for example a DNS-amplification attack. In a DNS-amplification attack, the attacker spoofs look-up requests to domain name system (DNS) servers to hide the source of the exploit and direct the response to the target. Through various techniques, the attacker turns a small DNS query into a much larger payload directed at the target network.

 The size of attacks is increasing caused by the number of infected end points. Moreover, the possibility to increase the size of an attack by combining it with an amplification attack is worrying.

- **The protocol attack** - Another way of causing a DDoS attack is to send data packets that take advantage of weaknesses in the communication protocols and other protocols used mainly by network devices such as routers and firewalls. These devices receive packets for processing that lead to unexpected results. For example, a large number of communication sessions are opened without being properly closed in due time, this way consuming the resources of the network device. As a result, they can no longer accept any new sessions. Well-known examples of protocol-attacks are SYN floods, fragmented packet attacks, Ping of Death and Smurf-attacks. The number of SYN-flooding attacks is increasing. In many cases the botnets used contain so called Internet of Things (IoT) devices. Examples of these devices are consumer electronics like home-routers, IP-cameras and smart-TV’s. There are a lot of these devices nowadays and most of them are badly administered, resulting in non-patched systems and default administrator credentials.

- **The application-layer attack** - An application layer DDoS attack is named after the OSI-layers’ Application Layer (layer 7). The attacker is aiming at a specific function of a layer 7 protocol like http and misuses that function to exhaust the service. An example is the misuse of the GET/POST-function of http, performing a so-called slow attack which causes the web server to wait for a long time before answering the request of a web browser. An attack is disguised to look like legitimate traffic, except that it targets a specific function of the protocol it attacks. There is often not much bandwidth consumed and the e.g. web server just crashes. Application-layer attacks cannot be recognised as a DoS-attack during the encrypted transport. Only after decryption an application-layer attack can be recognised and mitigated.

- **Combined attacks** - At present combined attacks are becoming more frequent, using for example floodings and application-layer attacks at the same time, making mitigation of the attacks more complex.

DDoS attacks can also be used as an extortion-scheme. In this case, the victim receives an e-mail from an attack group asking for a (large) sum of money to prevent a (much larger) DDoS attack. Sometimes the email is preceded by the DDoS, as a proof of competence. The extortion message often refers to ‘vivid’ scenarios that are attributed to this offender group.
2.4.1 Impact and Consequences

Lately there has been a number of very large-scale attacks on non-PSPs. In March 2018 a memcached amplification attack broke a new DDoS record at 1.7 Tb/s. As far as the available reports indicate, this is still the largest attack to date. These attacks were possible, because of the fact that many IoT devices were infected. Attackers pick up the pace and raise the bar. Lately there have been more DDoS attacks over 50 Gbps than there were in all of 2019. Keep in mind attacks of this scale can take almost anyone offline. DDoS attacks are getting bolder and badder. Three of the six biggest volumetric DDoS attacks that have ever been recorded and mitigated have been in the first quarter in 2021, including the two largest known DDoS extortion attacks to date. Some of the latest attacks targeted an organization in Europe in the gambling industry and an organization in Asia in the video games industry.

When people think of DDoS attacks, they focus on the outliers, the massive Terabit attacks that generate headlines. But the smaller, more focused attacks can do just as much damage. More importantly, these smaller attacks are actually more common than their larger-scale counterparts. Sometimes, criminals will attempt credential stuffing attacks side by side with distractions, such as DDoS attacks, or they will skip the credentials and attempt to exploit applications or website vulnerabilities on the target’s domain.

DDoS attacks are a problem for any organization, but they are especially a problem for the financial services industry. The financial services sector is still a prime target for cyber criminals and it has been widely reported that in 2020 financial institutions came under attack more than ever before. According to Boston Consulting Group research, financial service firms are up to 300 times more likely to experience a cyber attack per year compared to companies in other industries. With the global pandemic and remote working driving significant increases in DDoS attacks on financial services in the first half of 2020 this appears to be a trend that is set to continue. A successful DDoS in the financial world could mean millions of euros lost for each minute of downtime. As mentioned, sometimes criminals will launch DDoS attacks as a distraction, either to conduct credential stuffing attacks or to exploit a web-based vulnerability. Between November 2017 and April 2019, Akamai tracked more than 800 DDoS attacks against the financial services industry. While gaming was the top target in that reporting period in terms of attack volume, the industry with the most unique targets was financial services. During the 18-month window, more than 40% of the unique DDoS targets were in the financial services industry.

The potential impact of a DDoS attack is twofold. On the one hand it can lead to the temporary unavailability of a PSP, including all its services, e.g. Internet banking, mobile banking, but also non-payment related services. And that can again lead to a form of blackmail (see next paragraph) by the attacker and/or – caused by a focus of many on re-establishing the service – a potential increase in successful fraud attempts. On the other hand, a consequence can be damage to the reputation of the attacked PSP, where e.g. the Internet banking service is “again” not available.

A group calling themselves "Cozy Bear" has been emailing various companies with an extortion letter, demanding payment and threatening targeted DDoS attacks if their demands are not met. Cozy Bear, also known as APT29, is known for its customized malware and attacks on commercial entities and government organizations across the globe. Akamai believes the letter is from a copycat group leveraging the Cozy Bear name as a means to invoke fear and panic. Their extortion letter actually suggests victims perform a Google search on their name, which immediately returns results related to the infamous group. So far, multiple companies have reported receiving an email.

Memcached is a database caching system for speeding up websites and networks.
demanding a sum of about $17,500 in Bitcoin, or 2 BTC, at the time this advisory was written. If the payments are not made before the deadline expires (usually 6 days), the price increases by 1 BTC each day the demand is not met, and the targeted DDoS attack will start. This is not the first time that DDoS extortion demands have circulated across the Internet. In 2015, Akamai published research concerning a group calling itself DD4BC (DDoS 4 Bitcoin), which was responsible for a number of DDoS attacks. Apparently clinging to the hope of a major Bitcoin payout, criminal actors have started to ramp up their efforts and their attack bandwidth, which puts to rest any notion that DDoS extortion was old news. The most recent extortion attack -- peaking at more than 800 Gbps and targeting a European gambling company -- was the biggest and most complex Akamai has seen since the widespread return of extortion attacks that kicked off in mid-August 2020. Since the start of the campaign, show-of-force attacks have grown from 200+ Gbps in August to 500+ Gbps by mid-September 2020.

It is clear that DDoS attacks are not a PSP specific issue, but it is also a threat to the whole financial sector. The threat is well known now in the sector and most PSPs have taken mitigating measures against these kinds of threats (see below).

2.4.2 Suggested Controls and Mitigation

PSPs should preferably set up a (DDoS) security control framework. In general terms they should be able to identify, protect, detect, respond, recover, assess and adjust possible DDoS attacks. The table below gives a high-level description of these controls.

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify</td>
<td>Develop the organisational understanding to manage DDoS risk to systems, assets, data and capabilities</td>
</tr>
<tr>
<td>Protect</td>
<td>Develop and implement the appropriate safeguards to ensure delivery of critical infrastructure services</td>
</tr>
<tr>
<td>Detect</td>
<td>Develop and implement the appropriate activities to identify the occurrence of a DDoS attack</td>
</tr>
<tr>
<td>Respond</td>
<td>Develop and implement the appropriate activities to take action regarding a detected cybersecurity event</td>
</tr>
<tr>
<td>Recover</td>
<td>Develop and implement the appropriate activities to maintain plans for resilience to restore any capabilities or services that were impaired due to a DDoS event</td>
</tr>
<tr>
<td>Assess</td>
<td>Determine whether the previous functions performed/functioned effectively</td>
</tr>
<tr>
<td>Adjust</td>
<td>Determine which changes need to be made, based on the assessment made</td>
</tr>
</tbody>
</table>

Table 5 High-level dynamic DDoS security control framework

The Internet Engineering Task Force (IETF) established a new working group called DDoS Open Threat Signalling (DOTS). The aim of DOTS is to develop a standard based approach for the real time signalling of DDoS related telemetry and threat handling requests and data between elements concerned with DDoS attack detection, classification, trace-back, and mitigation.

19 more details may be found in Chapter 5 in http://www.vurore.nl/images/vurore/downloads/scripties/2040-Def.scriptie_LarsDrost.pdf
In general, PSPs are expected to have implemented a so-called “DDoS mitigation scrubbing service”. This is a service to filter the fraudulent traffic of the DDoS attacks. Scrubbing is more specifically a good mitigating measure against flooding attacks and sometimes mitigating protocol-attacks. Scrubbing services are provided by third party service providers.

Since protocol- and application attacks comply with the standard for the protocol in question, it is more difficult to counteract such attacks. PSPs have implemented or should implement mitigating measures against application level attacks including for instance application-level security products, application level key completion indicators, filtering capabilities, etc.

PSPs can simulate attacks on their environment in order to prove that mitigating measures (including organisation and personnel) are adequate. Moreover, every entity should also test periodically their anti DDoS measures (e.g. through DDoS simulations). This testing should cover both the technical and the organisational aspects (e.g. procedures).

One additional set of countermeasures is to organise security intelligence. It is important to know what types of DDoS and what type of actors and motivations are around; it helps to take accurate measures and to determine the (residual) risk of the organisation of getting hit by DDoS-attacks.

Security intelligence can be received from a commercial organisation and/or a governmental or industry specific Computer Emergency Response Team (CERT), which are a good answer to deter the effects of DDoS activities.

PSPs should consult their upstream (telecom) provider and the local Law Enforcement Agency to check whether the logging capabilities of the PSP and the monitoring solutions of the PSP offer sufficient capabilities for the PSP to be “forensic ready” for law enforcement.

2.5 Botnets

A botnet is a collection of internet-connected devices compromised by an attacker who orchestrates through a C&C, without the knowledge of the victim.

Botnets act as a force multiplier for malicious activity. Commonly used for DDoS attacks, attackers also make use of the botnets’ collective power to scale attacks such as spamming, credential compromise, delivering malware or cryptocurrency mining. The word "botnet" is a combination of the words "robot" and "network". Nowadays, botnets seem to focus more and more on ransomware and not on fraud related activities. Notorious banking malware botnets such as Emotet are an example. Emotet has been one of the most professional and long lasting cybercrime services out there. First discovered as a banking Trojan in 2014, the malware evolved into the go-to solution for cybercriminals over the years. The EMOTET infrastructure essentially acted as a primary door opener for computer systems on a global scale. Once this unauthorised access was established, these were sold to other top-level criminal groups to deploy further illicit activities such data theft and extortion through ransomware. However, the Emotet botnet was succesfully taken down in January 2021 Europol announced in a Press Release[1] that Emotet had been disrupted and investigators had taken control of its infrastructure. Therefore thus more than 500 servers from different tiers were taken down of the criminal infrastructure. A database containing e-mail adressess, usernames and passwords stolen by Emotet was compiled by analysing all the seized infrastructure. This operation is the result of a collaborative effort between authorities in the Netherlands, Germany, the United States, the United Kingdom, France, Lithuania, Canada and Ukraine, with international activity coordinated by Europol and Eurojust. This operation was

Botnets have two main objectives:

- Herding more devices into the botnet and;
- Performing malicious activity.

The malicious activity performed by a botnet can be of a wide variety, namely:

Distributed Denial of Service (DDoS)

Botnets usually consist of such large numbers of remote machines that their cumulative bandwidth can reach hundreds of gigabytes of upstream traffic per second. This enables botmasters to start targeted sabotage attacks against websites. The usage of botnets that are becoming more and more intelligent will create flexible tools for the execution of DDoS attacks.

Spam email

One of the most popular uses of botnets was spamming. The ability of botnets to use bots’ IP addresses to hide the true originator of the spam email complicates countermeasures such as the blacklisting of suspicious IP addresses. Nowadays phishing is done less by botnets as more SIM cards are being used (“smishing”) for this purpose.

Credential harvesting

A major use of botnets, with the intention of gaining financial benefits, is for the automated extraction of user data and credentials from infected hosts.

Man-in-the-browser malware to intercept online banking credentials is one of the attack vectors that can achieve a large-scale attack through the use of a botnet.

Account testing fraud

Cybercriminals can scan a range of IP addresses to find a specific port, and then bombard the service - FTP, Telnet, RDP or others - with rapid-fire authentication credentials from a list they have developed or bought in the underground market.

In the electronic payments sector this can be used to test credit card numbers or online banking accounts.

Cryptocurrency mining

Cryptocurrency mining requires intensive computing power. Botnets are a preferred means to mine crypto-currency drawing on the victim’s system computing power and electricity.

Many other malicious activities may be performed benefitting from the large scale offered by botnets, such as:

- Click and pay-per-install fraud;
- Manipulation of online polls;
- Denial of inventory;
- CAPTCHA solving;
- Hosting illegal downloads.

2.5.1 Impact and Consequences

A few evolutions have occurred to botnets in the last years, in respect to their C&C strategy, to the types of infected devices, to the malicious activity and to the commercial model of botnets.
C&C strategy - Centralised to decentralised

The most important part of a botnet is the so-called C&C infrastructure from where the attacker can control the botnet giving instructions to the bots and receiving collected data from them. The first botnets would have a centralised approach comparable to the classic client-server network model.

Newer botnets use a decentralised, i.e. peer-to-peer, model in order to try and evade detection and to be more resilient in face of takedown attempts.

The bots maintain connectivity to other bots and issue requests for new commands to the botnet. Because there is no single set of command servers that can serve as a single point of failure, and the botmaster can hide inside the network of bots when giving commands, this approach is harder to mitigate.

Types of infected devices – Computers to IoT

The compromised systems in traditional botnets were almost exclusively computers, recent botnets compromise IoT devices such as cameras, routers, Digital Video Recorders (DVRs), wearables and other embedded technologies. IoT botnets tend to be larger in scale due to a set of characteristics of the compromised systems:

- IoT devices are usually designed with lowering costs as a major driver and security interests tend to be neglected. As a result, these embedded devices are easily exploited (e.g., default credentials, exposed services).
- These devices are in many cases not subject to patching or firmware upgrades leaving large numbers of devices subject to exploitation of already published vulnerabilities.
- Many of these devices are permanently online and available 24x365, resulting in a larger exposure surface from the beginning of an exploit.
- Devices are rarely monitored, preventing timely detection.

Botnet malicious activity – Crypto-currency mining

Botnets are the basis for certain types of attacks such as DDoS and spam mailing; and are a way to enlarge the scale of other attack types.

One use of botnets that fits perfectly the objective of the attackers is by using the bots for crypto-currency mining. The vast computing capacity managed through the botnet’s compromised devices and the tremendous usage of electricity power, both supported unknowingly by the victims, are beneficial for financial gains through crypto-currency mining. The fact that no apparent harm is sensed by the victim makes detection less probable and turns the botnet even more profitable.

Commercial model of botnets – Botnet kits

For some years, botnets have been offered as a commodity either through selling subparts of the botnet or by leasing botnets. More recently botnet kits have been behind some major botnets. The top three botnet kits — Andromeda, Gamarue and Wauchos — are estimated to be responsible for having compromised more than a million devices a month worldwide.
2.5.2 *Suggested Controls and Mitigation*

The CSDE (Council to Secure the Digital Economy) has published the “International botnet and IoT security guide – 2021”\(^{20}\) that highlights practices to combat botnet threats. This report details a wide range of mechanisms and processes that mitigate the effects of attacks conducted through botnets. It divides the measures applicable to “Infrastructure”, “Software development” and “IoT Devices” and further details measures for “Home and small business systems installation” and for “Enterprises”.

Authorities should agree with ISPs on limiting Internet access to customers who are (suspected of being) part of a botnet and isolating these customers in a quarantine network and integrate these agreements in SLA’s with these ISPs.

The ENISA report “Botnets: Detection, Measurement, Disinfection and Defense”\(^{21}\) continues to be a reference for mitigation techniques for botnet threats, covering both technical methods and social and regulatory approaches.

Technical countermeasures

- Blacklisting
- Sinkholing
- Orchestration of controls at host and network level
- Vulnerability management in combination with regular updates
- Distribution of fake/traceable credentials
- DNS-based countermeasures
- Direct takedown of C&C server
- Packet filtering on network and application level
- Walled gardens
- Peer-to-peer countermeasures
- Quarantine Infected Computers
- Infiltration and remote disinfection.

Regulatory and social countermeasures

- Dedicated laws on cybercrime
- User awareness raising and special training
- Central incident help desk

Enhance cooperation between stakeholders.

2.6 *Monetisation Channels*

A fraudster, who has succeeded to establish a fraudulent payment transaction (whether authorised or unauthorised), knows of course that investigators soon will follow the trace and that the transaction amount may be frozen or returned. He therefore aims at immediately leveraging a monetisation channel: a cash withdrawal, a purchase (that leaves no trace), a money transfer or a transfer to another bank account from which again a withdrawal, purchase or transfer may be initiated. Purchases that leave no trace may include buying crypto currencies or acquiring

gambling credits or goods that can easily be cashed in over the internet. Common examples of such goods include airline tickets and any type of vouchers or gift cards but may also include more expensive items such as jewellery or electronic equipment.

However, especially in a corporate context the fraudster’s monetisation options are not limited only to the immediate use of liquid funds available via the victim’s payment account, credit card, etc. but may include also cover acts such as brokering access to breached systems, data or user accounts, modification or encryption of data for subsequent extortion purposes, etc.

2.6.1 Impact and Consequences

To stay in the shadows the fraudster hires ‘money mules’ and uses their bank accounts to receive the fraudulent transfers and the mules themselves – according to the fraudster’s instructions – to bring the spoils to the fraudster in a way it cannot be tracked. The mule is either willingly or unwillingly, knowingly or unknowingly covering the tracks of the fraudster. The emergence and rapid expansion of crime-as-a-service has made money muling services readily available via darknet marketplaces and instead of recruiting them the fraudster can choose to hire money mules as and when needed.

Most mules will eventually be subject to investigations and reported to the police. If there are any funds left on a mule’s account after paying the fraudster, the mule will likely be forced to return the amount that was stolen from the original victim. Hence, it seems that a mule is bound to lose, but nevertheless new recruits are constantly being persuaded to act as such²².

When a fraudster has established the necessary mule(s), the fraudster will orchestrate the combination of conducting one or more fraudulent transactions and using the mule(s) to get the money out of sight. The actual flow may depend on the size of the amount(s) and the needed level of complexity to escape investigators. Especially cross-border transfers and more in particular instant payments make investigations and fund recovery more difficult and complex.

Two examples of possible flows involving money mules are provided below. While complexity makes it harder for investigators, it also increases quite dramatically the fraudsters’ effort and risks. Most cases therefore are not very complex and do not involve more than one or two levels of mules, although when needed professional mules can be sourced “as a service” to make things easier for a fraudster.

²² See a comprehensive description of “The money mule trap” at FINTRAIL
Figure 2: Classic upscaled money mule flow

A critical step is when the money finally leaves the banking system through any kind of transaction that covers the tracks sufficiently for the criminals. In the flows above the mule withdraws cash and often sends it to the fraudster via money transfer service to preserve anonymity. However other modi operandi may be employed in which money mules can be avoided or digitised:

- By directly purchasing valuable assets (ideally digital) which can easily be cashed-in over the internet;
- By directly initiating a fraudulent payment to a money transfer service account (such service supporting withdrawal around the globe with varying levels of identity verification);
- By directly buying hard-to-investigate or hard-to-trace crypto currencies.

Anonymity of crypto currencies exploited as a replacement for mules

While money transfer services have always played a key role in enabling fraudsters to hide behind the money mules, anonymous virtual currencies have been identified as an often much more efficient replacement for both. Virtual currencies are defined by the European Banking Authority (EBA) as “a digital representation of value that is neither issued by a central bank or public authority nor necessarily attached to a fiat currency but is used by natural or legal persons as a means of exchange and can be transferred, stored or traded electronically”.

Over the last few years, popularity of virtual currencies has skyrocketed, due to the surge of decentralised digital currencies, like Bitcoin, the first to appear in 2009 and still the most important of them. Decentralisation means that one person can pay directly to another without using a third party as an intermediary, something that before was only possible using cash. It is for this reason that decentralised digital currencies are commonly considered “digital cash” and currently achieve a market capitalisation of more than 200 billion euros.

In Bitcoin-like schemes, trust is provided by a mix of technologies that include primarily cryptography, instead of being provided by a trusted third party. Therefore, these kinds of decentralised currencies are also referred to as cryptocurrencies. As such they allow for reliable, fast and irreversible online transactions, are not centrally controlled, have no built-in know-your-customer (KYC) mechanism, and are relatively difficult to trace. Therefore, they have also become

25 Cryptocurrency market capitalisation is available at https://coinmarketcap.com/
a magnet for criminals. Indeed, their illicit use is increasingly happening as criminals are gradually accepting it as a currency of choice for trade in the darknet.

Although all crypto currency transactions are stored publicly and permanently on the network by means of blockchain technology, the identity of a user behind an address can remain unknown. Moreover, Bitcoin mixer services have appeared, with the aim to provide obfuscation of the flow of funds in exchange for a fee, allowing fraudsters to move and cash-out the stolen funds anonymously.

2.6.2 Suggested Controls and Mitigation

Money mules, anonymous or non-traceable money transfers, crypto currency services, but also instant payments make it easier for fraudsters and harder for fraud investigators.

Raise Awareness

It is not generally understood that when a person receives some money (e.g. via a mobile P2P or banking app) – withdraws the same amount from an ATM and passes on the cash to some friendly person they just met, they might have in reality helped to cover up a crime. Awareness is especially necessary towards youngsters, who due to natural lack of experience, low income, willingness to-help-out and sometimes some “peer pressure”, seem more prone to become mules. PSPs should be careful to give easy-to-understand warnings against “becoming a mule” when they provide access to on-line banking services or issue payment cards. Awareness must also target other identified “vulnerable” groups (such as low-income persons, addicts, etc.) tempted by seemingly easy money and unaware of law and consequences.

Register/ share identified mules

For those mules, who know what they are doing and do it for the gains they can achieve, awareness is not relevant. Instead, PSPs should cooperate to achieve that the same person cannot act as colluding mule again and again by shifting to a new PSP. It should be possible to register in a common database if a person repeatedly has acted as a mule, subject to respect of data protection laws (e.g., GDPR). This should not necessarily hinder this person to open a payment account, but it should enable monitoring to detect possible new mule activity by this person at a very early stage.

Monitor, detect and stop mule-like behaviour at PSP and regulator level

Regulators and PSPs should consider having mechanisms in place to react and stop supporting service practices or to put related transactions on hold, until further investigated, if transaction patterns indicate “mule activity” – e.g., if larger amounts arrive from or flow to new (unknown) sources, followed by attempts to cash out or pass on these amounts via other ways.

Detect complex mule and money laundering schemes

For a single PSP it may end up being very difficult to “follow the track” if there are many mule-levels and cross-border payments are involved. However, if PSPs cooperate and pool their payment data (in a secure and lawful way), it may be possible to use strong analysis tools and much more efficiently detect mule accounts and money laundering rings. Whereas the first mule level has a short lifetime, subsequent mule-levels may re-use accounts over a longer period if they can stay undetected. Analysis on pooled data can put a significant pressure on money mule

26 See “The money mule trap” at FINTRAIL
27 See New anti-money laundering technology sees UK fraud rings frozen
schemes. To be effective in the long run such cooperation must be cross-border and will become even more important in view of instant payments, which are expected to gradually become the new normal.

3 Fraud per Payment-Relevant Process

3.1 Introduction
This section describes various attacks that may lead to fraud, occurring in all payment-relevant processes of a business transaction. Often attacks are caused by exploiting a combination of several threats. Multi-vector attacks are becoming commonplace and have been targeting a number of financial institutions (e.g. recent examples of multi-vector attacks include cyberattacks using the SWIFT-related banking infrastructure, ATM infections, remote banking systems and POS terminal networks\(^{29}\), making changes in PSP' databases to “play” with account balances, as well as supply-chain attacks, i.e. attacks on vendors supplying financial organisations\(^{30}\)).

The table below provides a non-exhaustive view on possible impact of threats and fraud enablers on payment-relevant processes.

<table>
<thead>
<tr>
<th></th>
<th>Social engineering</th>
<th>Malware</th>
<th>APT</th>
<th>DoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-boarding/ Provisioning</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invoicing/ Request-to-Pay</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiation/ Authentication</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Execution</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

3.2 On-boarding and Provisioning
There are essentially four types of attacks against on-boarding or provisioning processes:

- Manipulate client information in an authoritative registry e.g., change the surface mailing address for hardware credentials (authenticator or payment cards) or the mobile number for SMS one time passwords (OTP) and then trigger a delivery to the modified destination.
- Exploit oversimplified ordering of new or replacement credentials to a registered address, with the intention to physically steal the credentials from the client's mailbox upon delivery by the post services.
- Fake enrolment with stolen onboarding or login credentials to a payment app, mobile bank app or general authenticator app. If login credentials can also be used for activation this is very convenient, as it allows the fraudster to delay payment execution until any time later that better suits the attack.
- Request Subscriber Identification Module (SIM) Swapping or Duplication from the mobile network operator in case the bank uses SMS OTP and the network operator's client authentication procedure is easier to overcome than any of the bank’s procedures.

Manipulation of identity-relevant information
Already in the on-boarding process a fraudster could be involved. The purpose for the fraudster can be e.g., to obtain tax returns intended for the victim, take out loans in victim’s name, establish a mule account, get a credit card with a spendable limit and others. KYC and AML laws and

regulations oblige banks and other account servicing institutions to apply a thorough scrutiny, when opening new customer relationships.

‘Verifying the identity of a new account holder’ and ‘providing a new account holder with an authenticator for payments may seem two independent procedures, but the quality of the first largely impacts the second. There is a certain point in the ‘onboarding dialogue’ - whether face-to-face or online - where the new account holder is identified and where sensitive information is securely exchanged. During onboarding, every information that is relevant for a secure provisioning of authenticators or for later secure authentication, e.g. with Q&A over the phone, must be collected in a reliable way. This may include:

- home address (verified by authoritative registry),
- telephone number
- email address,
- copy of passport, driver license or other types of ID documents
- Activation code for an authenticator
- Control questions with a set of answers only account holder should know
- biometrics (e.g. pictures, fingerprints or other)

Exploitation of oversimplified ordering of credentials

Often triggering a surface mailing to a preregistered address is deem insensitive and can be initiate without any strong authentication. However, If the client is known not to be at home during delivery or has a mailbox that is easily accessible for a fraudster, the fraudster may exploit the oversimplification of the ordering / reordering process to get physical hold of a spare set of credentials.

Fake enrolment with stolen credentials

Whereas a secure and correctly enrolled mobile authentication/payment app may be hard to attack, the enrolment procedure itself may be weaker and therefore become a preferred target for fraudsters. The enrolment may require information that can easily be phished or vished or guessed, may depend upon approvals by the victim easily persuadable through some sort of scam or may simply be exposed to manipulation by malware in every authenticated online banking session (e.g. registered a mobile number). If so, the fraudster may be able to perform a fake enrolment to a mobile authenticator that can be misused afterwards to authorise any payment at any point in time.

SIM swapping or duplicate SIM attacks

SIM swapping or duplicate SIM ordering are legitimate services offered by mobile network operators. The reasons for carrying out the swap are to enable the user to move to other mobile network operator, to disable and replace a SIM card following a lost or stolen mobile device, to change the SIM card for a new one of a different form factor or to get a duplicate card to permanently install on another device or in a car.

SIM swap fraud happens when fraudsters transfer a customer’s mobile number to a fraudster’s SIM. Duplicate SIM fraud happens when fraudsters order a duplicate SIM to a modified address or collect a duplicated SIM in a provider shop. Fraudsters leverage such attacks to acquire security messages with one-time passwords (OTP) sent to the customer by the PSP, for reconfirmation of sensitive operations such as specific payments (e.g. 3D Secure for online card transactions), changes to the customer profiles, whitelisting of beneficiaries, provisioning of card tokens to wallets and then leverage those to perform fraud.
3.2.1 Suggested Controls and Mitigation

The general advice is that the security level for the enrolment or ordering of credentials (authenticators or payment cards, must be as strong as (or preferably: stronger than) the authentication and confirmation of a high-risk payment. This means that the enrolment should rely on ‘factors’ that cannot be compromised by the same method. In addition, it may be considered to send notifications and, in case of authenticators, to only allow the authenticator to give access to information (not payments) for a quarantine period of 1 or 2 days.

Biometrics capture during online on-boarding may also offer an interesting alternative to be used as a possible authentication ‘factor’ during authenticator app enrolment. Face, voice, fingerprints, veins in the hand or in the eye are characteristic features that can allow for a strong and otherwise independent authentication in such a situation. The smart phone, moreover, can supports the app in capturing these biometrics. But three key questions nevertheless arise:

- What can these biometrics be compared with for authentication, i.e., does the issuer of an authenticator app have access to reference data from the on-boarding process?
- Does the technology perform as needed and expected, i.e., is it user-friendly and are true users accepted and imposters rejected both with high probability?
- Is it cost-efficient and can it be smoothly integrated with the ‘identity verification’ process in place or established to cover for KYC and AML during on-boarding?

As of now there is no clear answer yet to these questions and most of this data will likely become available only with the spreading of modern selfie or video based online on-boarding processes. Nevertheless, it is deemed worth early exploring these possibilities as a valuable means against false enrolment of authenticator apps.

SIM swap and SIM duplication fraud detection identifies suspicious SIM usage patterns. It ranks the risk based on location, device type and customer behaviour. Different risk levels trigger different corrective actions, such as blocking transactions, locking accounts, or sending customer communications. There are a number of controls that end users can implement to try and prevent, or at least quickly detect, SIM swapping:

- Enquire with your mobile operator if you have no network connectivity and you are not receiving any calls or SMS for unusually long periods;
- Keep personal details that would be useful to a fraudster, i.e. phone number, date of birth etc. off social media sites;
- Ask your mobile payment service provider to give you details of every financial transaction through two channels - for instance, SMS as well as email alerts.

In addition, a mobile payment service provider can negotiate with the mobile operators that they are informed about the SIM swaps or duplicate SIM issuing. This can help in monitoring the usage of the account.

During the last years there has been a considerable increase in the use of the mobile device, whether via SMS, call or mobile application as the authentication mechanism. Technological solutions to try and secure the mobile device and enable out-of-band authentication via the device continue to be developed and implemented. If credentials have been phished successfully and the attacker tries to abuse them to make a fraudulent transaction, there may still be hurdles to overcome (c.f. Section 3.4).
3.3 Invoicing and Request-to-Pay

Although the invoicing (paper-based or e-invoicing) and Request-to-Pay\(^{31}\) (RTP) are processes that, in an end-to-end business transaction, are outside of the payment chain, they are particularly exposed to fraud as they rely on the trust between the Payee and Payer and the security of the environment in which this information is exchanged. Therefore, they give rise to a specific vector of fraud for subsequent payment processes.

Often, fraud on invoices or RTP messages leads to Authorised Push Payment (APP) fraud at the payment stage, as the payers initiate related payments in good faith, by accepting the terms presented in the invoice or the RTP. Moreover, when received through trusted channels such as an e-banking interface, the RTPs or e-invoices are treated as verified and their senders trusted by the Payer’s PSP. Another reason that e-invoices/RTP are often trusted is that they appear to be sent by government departments (for taxes, fines), the police, healthcare institutions or from utilities or telecommunication operators. If by extension, any claim for payment is considered a form of RTP, the invoicing and RTP fraud patterns can give rise to a fraud category commonly referred to as APP fraud.

Authorised Push Payment (APP) fraud, in which the victims – being subject to a scam - actually make the payment themselves, is showing a steep increase and for PSPs is much harder to detect. At the root of any APP scam is a “convincing” lie with which the fraudster somehow manages to deceive the victim.

In the “Fraud-the-Facts 2021” report\(^{32}\) from UK Finance, the following types of APP scams can be found:

- **Purchase scam**: the victim pays in advance for goods or services that are never received. These scams usually involve the victim using an online platform such as an auction website or social media.

- **Investment scam**: a criminal convinces the victims to move their money to a fictitious fund or to pay for a fake investment. The criminal will usually promise a high return in order to entice victims into making the transfer. These scams include investments in items such as gold, property, carbon credits, cryptocurrencies, land banks and wine.

- **Romance scam**: the victim is convinced to make a payment to a person they have met online through social media or dating websites, and with whom they believe they are in a relationship. Fraudsters will use fake profiles to target their victims in an attempt to start a relationship which they will try to develop over a long period of time. Once they have established their victim’s trust, the criminal will then claim to be experiencing a problem, such as an issue with a visa, health or flight tickets and ask for money to help.

- **Advance fee scam**: a criminal convinces their victim to pay a fee which they claim would result in the release of a much larger payment or high-value goods. These scams include claims from the criminals that the victim has won an overseas lottery, that gold or jewellery is being held at customs or that an inheritance is due. The fraudster tells the victims that a fee must be paid to release the funds or goods, however, when the payment is made, the promised goods or money never materialise. These scams often begin with an

\(^{31}\) The “RTP Specifications for a Standardisation Framework” document (published by the EPC Multi-stakeholder Group on RTP in November 2019) defines RTP as “… the set of operating rules and technical elements (including messages) that allow a Payee (or creditor) to claim an amount of money from a Payer (debtor) for a specific transaction”

email or a letter sent by the criminal to the victim. A special version of this scam occurs, when a victim realises that they have been subject to a fraud, and is contacted by a “solicitor” offering to help get the money back for a small fee.

- **Invoice or mandate scam**: the victim attempts to pay an invoice to a legitimate payee, but the criminal intervenes to convince the victim to redirect the payment to an account they control. It includes criminals targeting consumers posing as conveyancing solicitors, builders and other tradespeople, or targeting businesses posing as a supplier, and claiming that the bank account details have changed. This type of fraud often involves the criminal either intercepting emails or compromising an email account.

- **CEO fraud**: is where the criminal manages to impersonate the CEO of the victim’s organisation to convince the victim to make an urgent payment to the scammer’s account. This type of fraud mostly affects businesses.

- **Impersonation of police / PSP staff**: in this scam, the criminals contact the victim purporting to be from either the police or the victim’s PSP and convinces the victim to make a payment to an account they control.

- **Other impersonations**: a criminal claims to represent an organisation such as a utility company, communications service provider or government department. Common scams include claims that the victim must settle a fictitious fine, pay overdue tax or return an erroneous refund. Sometimes the criminal requests remote access to the victim’s computer as part of the scam, claiming that they need to help “fix” a problem. These scams may be perpetrated using only persuasion, but the fraudster sometimes may include other elements from the fraudster toolbox like vishing and abuse of credentials or malware on the victim’s device.

Specific fraud patterns targeting invoicing/e-invoicing processes:

- As mentioned above, in the 2021 fraud report of UK Finance, an invoice scam could take form of an illegitimate information to payers that the account number (IBAN) of a legitimate payee has changed. This can be called IBAN-fraud or IBAN manipulation whereby a fraudster intercepts and manipulates a paper invoice or an invoice in digital format (e.g. unstructured PDF invoice, or structured e-invoice in a standardised format).

Regarding paper-based invoices for example fraudsters intercept these by taking them out of the mailboxes of the payers and only change the respective IBAN of the payee. This might also be the case for attached paper-slips. Because of the fact that all the other information is unaltered the invoice still looks legitimate. Examples are also known where such manipulation took place at the post office before delivery.

In cases QR-codes which contain payment-data are used as part of an invoice, only the information in the QR-code might be altered by fraudsters, in particular the IBAN of the payee. The parts of the invoice which are readable by the payer may show unaltered and therefore correct IBANs related to a specific company.

In another scenario a fraudster produces fake invoices from scratch, using names and logos of common corporates, such as utilities, insurance companies or big brands. These invoices are then sent by mail or manually put in the mailboxes of potential victims.

A new form of fraud has been detected in late 2020 and 2021 in some countries, involving different instant payment solutions using the mobile phone of the victim. The fraudsters send a request for money while convincing the victim that it is a payment that they are eligible to receive, for example, a refund of Government fees/taxes. Once convinced, the victim accepts the request
to pay thinking that he will receive the money and instead of that, the money is taken from his bank account33.

For e-invoices, the same patterns apply although they are commonly distributed via email to a much higher number of potential victims, increasing the possibility for triggering fraudulent payments.

A review of fraud patterns that specifically target RTP processes must consider that:

- RTP is a service still in the early stages of development with various levels of maturity and availability in the European market. The e-invoicing cases already mentioned are in some extent applicable also to RTP.

- Fraudsters that have been successfully onboarded to an RTP service might distribute very large amounts of illegitimate RTP messages, counting on a significant number of payers that do not check the underlying business (payee) and simply authorise their PSP to initiate a payment transaction to pay the amount in the respective request. The effectiveness of this fraud vector is further enhanced by RTPs presented within the payer’s online banking to make the payment transaction authorisation process simpler and faster.

- It is still too early for a more complete assessment of the specific threats and fraud patterns that impact RTP services. Nevertheless, it is worth mentioning that v1.0 of the Rulebook of the SEPA-wide RTP Scheme started to apply in May 2021 and that Scheme Participants started being onboarded in Q42021. .

3.3.1 \textit{Suggested Controls and Mitigation}

Scams aiming to carry out APPs resulting from fraudulent invoicing and RTP processes are very different and require more elaborate warnings. Specific customer segments may be more exposed to some types of scams than others. For instance, corporate customers are more exposed to invoice scams and CEO-fraud and the awareness campaigns must be tailored accordingly. In the private segment elderly/vulnerable customers appear to be targeted. The use of special awareness campaigns that target certain vulnerable groups may be an APP fraud mitigation control that PSPs consider. But since it may be difficult to reach the target groups effectively, it is recommended also to run more general campaigns that include a suggestion to discuss the risks with friends and family members who may be vulnerable. PSPs may further consider introducing payment limits or geo-blocking features as is common with card payments. The restrictions could by default depend on customer profile, but still be configurable for the individual.

Same as with phishing, the service provider’s “central monitoring” may find a transaction “suspicious”, put it on hold and request customer reconfirmation via a secure out-of-band channel. Whenever a payment service user is prompted to approve or confirm a payment, the transaction data - especially amount and payee - must be clearly displayed on the user’s device, supporting the user in better identifying certain APP scams.

Certain countries like the Netherlands or the UK have established dedicated "\textit{Confirmation of Payee}" services. When a payer wants to make a payment, he enters on his device (e.g. mobile phone) not just the account number, but also the name of the beneficiary. The payer’s PSP than first validates the match between the account number and the beneficiary’s name with the beneficiary’s PSP or a service acting on behalf of that PSP. If there is no match, the payer is

\begin{footnotesize}
33 \url{https://www.elcorreo.com/tecnologia/internet/consiste-estafa-bizum-20210506135720-nt.html}
\end{footnotesize}
informed and may decide not to proceed with the payment. Certain types of APP fraud - especially invoice fraud - can specifically be countered by such a service.

With regard to e-invoicing, the 2018 report from the EPC Multi-stakeholder Group on EIPP34 emphasises the following key principles in ensuring trust and security:

- The status of actors and the roles they perform have to be clearly defined (including by ensuring proper execution and control of related processes (KYC, AML, etc);
- Trust of Payees is essential for Payers and this relation of trust should be supported by implementing a secure environment for Payee enrolment;
- All actors in the EIPP chain should take the measures to enforce the data confidentiality, evidence, and integrity.

3.4 Payment Initiation & Authentication

Payment Initiation & authentication attacks refer to those that focus on the end clients’ systems and thus are distinct from the scam-based attacks described in the previous section that tend to target the end clients themselves or the channels through which they get invoices or RTPs.

Payment initiation and authentication is primarily exposed to malware attacks. During the past years we have seen malware evolving from key logging, capturing of online banking credentials or credit card numbers, to man-in-the-browsers taking advantage of virtual keyboards RATs and memory scraping functionality. The most important and persistent banking malware is Emotet which is described in chapter 2.5. Many other strains of specialised malware have surged targeting banking credentials, targeting credit card numbers, targeting POS systems with the intention to gather PINs and card data, or targeting ATMs with the intention to enable jackpotting attacks.

Such malware may either directly manipulates transactions or steal credentials entered by the customers towards misusing them at a later stage. It is common to see such attacks combined with social engineering to either give the customer the impression that a specific payment has been initiated as intended or a payment has been erroneously received and should be reimbursed, or that access to online banking is not available for a certain time.

3.4.1 Suggested Controls and Mitigation

No dedicated controls or mitigations beside the ones listed against the social engineering and malware threats in section 2.

3.5 Payment Execution

Payment execution attacks refer to those attacks that focus on central processing systems where the actual validation of the transaction and the transfer of funds itself are executed. These attacks can occur at a bank or at an account information or payments initiation service provider, at a card processor, card issuer or acquirer network, as well as on a clearing infrastructure; attacks on SWIFT or other clearing interfaces fall under this latter scope. Such attacks may come with severe financial consequences, given that the impact from data losses, service disruptions or compromised transactions may be in the range of thousands up to billions of Euros.

Beside the DDoS attacks covered at large in the previous section, the greatest risk here comes from advanced persistent threat attacks (APTs). As explained in Section 2, they usually leverage themselves all possible techniques ranging from social engineering and DDoS up to specially crafted malware. There have been a wide diversity of APT attacks against financial institutions in

34 2018 Report from the EPC EIPP Multi-Stakeholder Group
the last years. Ultimately, they can target any entity, compromise whatever data, and misuse whatever service.

In the financial sector we have seen major data breaches primarily compromising bank card data. Targeted APT attacks have been conducted - most prominently - against SWIFT service bureau and gateway infrastructures but also against acquiring and card issuer authorisation systems.

In the following we give a brief overview of each one of these types of APT attacks.

Card data breach APTs

One of the first attacks involving the breach of cardholder data took place in 2004 where 40 million cards were compromised at the former company called CardSystems. Since then, many data breaches compromising many millions of cards have occurred and continue to occur. All these data breaches present various modus operandi following the structured approach mentioned in section 2.3.

The initial foothold is usually executed through social engineering bank employees towards obtaining credentials, or by convincing the employee to open an attachment that will exploit a zero day vulnerability or by exploiting a vulnerability of an external facing system. Card data breaches vary in respect to the types of systems attacked and the types of data that they may harvest.

Compromise of databases holding card data continues to be common despite the enforced PCI DSS programs. These compromises have the characteristic of usually stealing data stored over various years and generally are limited to card numbers and expiry dates. It is not uncommon though, to also compromise CVVs as well.

Other data breaches intercept transaction data when being processed or whilst in transit in the communications realm. These attacks tend to compromise a shorter span of data given that they do not have access to historical transactions, compared to database compromises. On the other hand they usually compromise data of higher value such as CVV2 and chip or magnetic track data.

Some special variants of APT attacks consist in infecting terminals, POS or ATM with malware. These APT attacks go through the process of compromising internal systems and making lateral movements until they grasp a system with the capability of downloading software to the POS or ATM. In one case the malware on the infected POS was performing memory scraping getting the card track data and exfiltrating it back over the compromised internal systems. The reusable data is then typically sold in dark web forums and misused all over the world.

The adoption of EMV standards² based on chip cards has created a secure alternative to magnetic stripes, countering such attacks. However, the benefits of this new chip technology will only become fully effective with the complete ban of the magnetic stripe technology, at the basis also of magnetic stripe skimming and shimming attacks. These past few years have seen the largest missing countries adopting EMV, notably the US, so that cloned magnetic stripe cards can now solely be misused in the few remaining countries that have not yet embraced EMV.

SWIFT APTs

The SWIFT infrastructure has been designed with security considerations right from the very beginning and as an example of this commitment, protection of payment transactions is based on cryptography making use of hardware security modules. Even so, compromises have occurred where the operators and the SWIFT gateway systems that interface with operators and service users were exploited. This resulted in the injection of fraudulent transactions and specially crafted software that, in some instances, would even hide the fraudulent transactions from the operators.
SWIFT gathered intelligence with regard to these attacks and shared it with their customers under NDAs, so that customers can prepare specific mitigations against these kinds of attacks. Moreover, the SWIFT Customer Security Program has set forward a set of security requirements that SWIFT clients must adopt and get certified against. Very little information is publicly available about all this except for the numerous attacks reported in the press and a substantial revealing report published by F-Secure\(^\text{35}\).

Through the analysis of the various reported cases, it can be concluded that there are diverse modi operandi, however infecting bank or service bureaus’ internal systems with malware is common to most attacks and the compromise of employee credentials is frequently one of the mechanisms used in these attacks. Most of these attacks have in common the fact that the time taken for attackers to prepare the final heist can be unexpectedly long, sometimes taking more than a year in preparation. On the other hand, the attackers manage to reap amounts ranging up to nearly a hundred million Euros.

Card Processing APTs

Some major attacks have occurred relating to the manipulation of card transaction processing parameters. Usually those attacks change the fraud control parameters, such as spending limits, of a few cards and then in a synchronized and distributed attack withdraw as much cash as possible in a timeframe of only a few hours.

As early as 2008, a major processor’s systems were compromised and the attackers managed to replenish the available funds and raise the spending limits of 44 prepaid payroll cards. Three days later 9 million USD were withdrawn in 280 cities in a time window of 12 hours. Since this attack a few high profile attacks of the same kind have occurred: misusing a few cards to withdraw within only a few hours\(^\text{36}\)\(^\text{37}\)\(^\text{38}\) many millions of Euro, on terminals spread all over the world.

Some of such attacks were the result of an APT laterally moving through internal issuer systems until the card processing system was reached.

3.5.1 **Suggested Controls and Mitigation**

No dedicated controls or mitigations beside the ones listed against the social engineering and APT threats in section 2.

4 Fraud unique to Specific Payment Instruments

The various threats and fraud patterns described in the previous section can basically lead to two categories of fraud, namely so called “Authorised payment fraud” and “Unauthorised payment fraud”. **Authorised payment fraud** refers to authorised transactions in which the genuine payer initiates and approves a payment to an account under the control of a criminal. **Unauthorised payment fraud** refers to an unauthorised fraudulent transaction whereby the genuine payer does not provide authorisation for the payment to proceed and the transaction is carried out by a criminal.

The sections below describe fraud related to specific payment instruments.

4.1 SEPA Schemes

The various threats and fraud enablers described in Section 2 of this document could lead to fraud on SEPA payment schemes (SCT, SCT Inst, SDD – Core and B2B) as well as on supporting schemes such as SEPA Proxy Lookup and SEPA Request-to-Pay. As set out in the previous section, regardless the payment instrument, the fraud can occur at all payment-relevant processes of a transaction.

These fraud scenarios are detailed in the next sections.

4.1.1 SEPA Credit Transfer (SCT)

SCT is a SEPA wide Credit Transfer scheme managed by the European Payments Council and its governing rules and standards are described in the SCT Rulebook.\(^{39}\)

The following processes of SCT transactions can be targeted by various threats and fraud enablers:

On-boarding and provision

- A fraudster using various techniques, notably social engineering for asking for example a SIM-swap of a legitimate user mobile subscription, can open a profile and record a victim bank account. Once the provisioning is completed the fraudster may initiate fraudulent SCT transactions.
- A fraudulent, one-time access to account holder profile in an e-banking or mobile banking application, can be used to create fake beneficiaries. Recording these beneficiaries under genuine and known names, can trick the account holder when initiating SCT transactions. Also once a fake beneficiary is created, automatic and periodic SCTs can be configured so that at every term an amount of money is automatically transferred to the fraudster without further intervention by the victim. These fraudulent credit transfer transactions can be executed until the attack is discovered and can lead to important losses for the victim, often hard to recover as funds can be used for cash withdrawal, purchase of physical goods or for money-mulling purposes.
- Full fraudulent bank account creation (after identity theft or weak KYC procedures) for further use as Beneficiary account in fraud scenarios based on “money mules”.

Invoicing and Request-to-Pay

- These processes are not directly part of the SCT scheme. The payment using SCT scheme represents the “payment” part of a larger end-to-end purchase flow and is preceded by the invoicing or the RTP step. However, the electronic invoicing for payment purposes (EIPP) and RTP are beneficial for payers as they facilitate smooth payment initiation without the need for entering transaction and beneficiary details. This advantage can be exploited by...
fraudsters to further automate the fraudulent actions leading to illegitimate fund transfers using the SCT scheme. Therefore Invoicing (including EIPP) and RTP processes are relevant for the SCT scheme.

- The two main fraudulent actions with effect on invoicing and Request-to-Pay (RTP) processes have been described in the corresponding section of the chapter 3: Payee impersonation and IBAN manipulation. These are particularly relevant for the SCT scheme as the payment instrument most often associated with Request-to-Pay is Credit Transfer and this is for a large extent also true for invoicing.

Payment initiation and authentication

- During the last years, the criminals’ use of impersonation and deception scams, as well as online attacks to compromise data, continued to be the primary factor behind fraud losses related to SCT payments. In these methods, criminals target personal and financial details which are used to facilitate fraud or convince the genuine account holder to authorise a transaction to an account controlled by the criminal (Authorised Push Payment - APP).

- Various types of social engineering – detailed in Section 2 – can be used to initiate payments even if Strong Customer Authentication is active and mandated. Once the customer trust is obtained by these means, the fraudsters can make updates of the e-banking profile of the customer (mentioned in the Onboarding section above) or simply initiate credit transfers. According to the 2021 report from UK Finance, intelligence suggests that criminals continue to focus on contacting customers by phone, text message or email pretending to represent a trusted organisation such as a PSP, the police, a utility, e-commerce or broadband provider company, or a government department. Often the approach claims that there has been suspicious activity on an account, account details need to be updated or verified or a “refund” is due. The information gathered (such as passwords and passcodes, bank account details) are then used by the criminal to make an unauthorised payment. Criminals also use these fraudulent approaches to trick people into APPs. APP fraud is the fastest growing fraud in the UK and the related loss is even larger than fraud losses related to “unauthorised payment fraud”.

- “Unauthorised payment fraud” is often the result of attacks using malwares. Malwares installed on the customers’ devices (individual or corporate customers), or on the devices of bank agents in the bank’s branches, to either intercept authentication credentials for further or immediate use on separate channels controller by fraudsters, or to directly initiate fraudulent credit transfers. According to ENISA Thread Landscape 2020 - Malware, malware has increased over 13% this last year, noting an increase in malware designed for mobile banking.

Payment execution

- At the execution stage, once the customer is authenticated and a payment instruction has been initiated, sophisticated intrusions could target the PSPs infrastructures or infrastructures of the CSMs.

- An important technique that could be used now and for the future seems to be APT. It must be considered as a potential high risk not only for the payment infrastructure but for

all network related ecosystems. With a limited number of criminals involved, a maximum result can be established (see Section 2.3).

- DDoS attacks, that can also rely on botnets can target PSPs or CSMs infrastructures can make serious damages and even if these do not have for object a fraudulent transfer of funds from customer accounts, they may create unavailability and affect the stability and the reputation of the payment operation infrastructures.
- In some cases, this type of attacks masks more classical attacks and is used to divert the attention and resource allocations of operational teams from actions of identifying and neutralising them.

4.1.2 SCT Inst

SCT Inst is an “instant Credit Transfer” scheme managed by the European Payments Council and its governing rules and standards are described in the SCT Inst Rulebook42.

The SCT Inst scheme can be impacted by the same threats and fraud enablers, and at the same stages of processing, as the classical SCT scheme. However, SCT Inst has specific features that distinguish it from the SCT scheme and that can be exploited leading to specific fraud:

- An SCT Inst transaction is much faster than an SCT transaction. The originator account is immediately debited, and the funds are instantly made available on the account of the beneficiary. It is executed in seconds and therefore the following consequences can be expected:
 - Whilst at the initiation and authentication stage, the fraud techniques based on social engineering and malwares are performed in the same way as for SCT, initiation is immediately followed by the execution and the use of funds fraudulently received is immediately possible for cash withdrawal or physical purchases.
 - The overall speed of transactions to/from “money mules” is much higher so that this type of enabler/monetisation channel is expected to be more intensively used with SCT Inst.
 - At the execution stage, the mechanism for fraud detection and transactions blocking must be executed in real-time.

- SCT Inst transactions must be processed continuously, on a 24/7 basis so that it is not possible to use the time before batch processing to perform anti-fraud screenings.
- The clearing and settlement is executed in almost the same time as the payment orders so that disruptions caused by APTs and DDoS might also affect these layers of transactions.

4.1.3 SDD (Core and B2B)

SDD Core and SDD B2B are SEPA wide Direct Debit schemes managed by the European Payments Council and their governing rules and standards are described in the SDD Core and SDD B2B Rulebooks43.

The following processes of SDD schemes can be targeted by various threats and fraud enablers:

On-boarding and provision

As in both SDD schemes the payment transactions are “pull” mode transactions (debtor account is debited on the basis of a debit/collection request coming from the creditor – provided that a

42 SEPA Instant Credit Transfer (SCT Inst) Rulebook 2019 v1.2
43 SEPA SDD Core Rulebook 2019 v1.2, SEPA SDD B2B Rulebook 2019 v1.2
proper mandate is signed by the debtor to allow the creditor to initiate such transaction), the on-boarding stage concerns the creditor. Moreover, on-boarding a creditor in an SDD scheme require a strong KYC process on the creditor PSP side. Although it might be possible that a fraudulent entity requests from a PSP to become a creditor in an SDD scheme, there were no notable fraud attempts of such type in the last years.

This would require that representatives of the fraudulent company be able to trick the controls that banks perform when registering companies for the role of SDD Creditors. For this type of fraud to happen, one would have to make use of complex social engineering targeting the corporate customer services of PSPs.

If the signature of the SDD mandate by a debtor is considered as part of the on-boarding process, another type of fraud is that the debtor indicates on the SDD mandate an IBAN of an account that does not belong to that debtor. A fraudulent debtor could in this way benefit from goods and services paid by SDD, whilst the payments for these services and goods are executed from someone else’s bank account. According to the 2020 yearly report from the Banque de France’s Observatory of the payment instruments’ security44, this was the main fraud technique used in 2020 in France for SDD fraud. The scheme’s rules however allow the victim to require the refund of amounts so that the effects of this type of fraud on the debtors can be easily mitigated.

Some merchants (e.g., selling digital goods, subscriptions to digital services, parking, subscriptions to newspapers and magazines etc.,) do not require a wet signature or the equivalent of the mandate and instead propose customers to sign a mandate by answering to an SMS, checking an option on a web portal, or sending an email containing an account number. Even though, depending on the jurisdiction, these forms of expressing an agreement are legally valid, the possibility of abusive use by some merchants could lead to fraud through social engineering.

Invoicing and Request-to-Pay

When starting a long-term, recurrent, commercial relationship merchants and service providers may propose customers to pay their invoices by Direct Debit. Often the mandate proposal is attached to the first invoice regardless if it is in paper or electronic format.

Wrong or unclear formulations in the mandate, identity theft, misleading presentation of the mandate scope could all be leveraged as social engineering towards convincing customers to sign valid SDD mandates for fraudulent purposes.

Initiation and authentication

In SDD schemes, the payment is initiated by the creditor. It is of the responsibility of the creditor PSP to ensure proper authentication of the creditor for the execution of direct debit collections. Nevertheless, it is neither in the SDD scheme rules, nor can it be in the authentication processes that the SDD mandate is verified. Therefore, there is a risk that a fraudulent creditor tries to execute SDD payments by debiting victims’ bank accounts without a mandate.

Another type of SDD fraud is based on the complicity between a fraudulent creditor and a debtor. With a proper mandate the creditor regularly debits the debtor’s account increasing the amounts. A short time before the end of the 13-month period for legal refund, the debtor contests the payments and asks the refund to their bank. At that moment, the creditor had transferred the funds to another account or transformed them in cash so that the creditor bank cannot recover these funds but is obliged to refund the debtor bank which had refunded the debtor.

44 Rapport 2020 de l’Observatoire de la sécurité des moyens de paiement
It has to be noted that the SDD B2B scheme is less likely to be targeted by fraud than SDD Core, as in SDD B2B the debtor is always a company and it is required that the debtor PSP verifies each collection to ensure that it is authorised under the mandate.

4.1.4 Supporting schemes

SEPA supporting schemes can be defined as schemes covering the exchange of the data necessary to initiate payments and facilitating interoperability.

Currently the EPC manages two supporting schemes: the “SEPA Proxy Lookup Scheme” (SPL), and the “SEPA Request-to-Pay” (SRTP) messaging scheme. The version 1.0 of the SRTP Rulebook was published in November 2020 and adopted in May 2021.45

Potentially when targeting supporting schemes, all relevant payment related processes that were detailed in Section 3 can be affected by some threats and fraud enablers set out in Section 2. Nevertheless, as the supporting schemes are relatively new, it is too early to observe specific real-life fraud actions targeting them.

4.1.5 Suggested controls and mitigations

Fraud prevention for SEPA schemes requires measures that involve all actors in the payment chain and are applicable to all payment processes. As part of its Scheme Management role, the EPC provides for each scheme, a Risk Management Annex (RMA), complementing the schemes Rulebooks. These RMAs are made available to scheme participants (PSPs) and include the identification and evaluation of risks and measures for their mitigation aiming to ensure an adequate degree of security, operational reliability and business continuity for the concerned scheme participants and their customers.

Regardless the scheme, some measures and best practices are:

- Establishing secure communication channels that guarantee data integrity and confidentiality, and mutual authentication between PSPs and Clearing and Settlement Mechanisms (CSMs)
- Use of appropriate measures against DDoS attacks on PSPs’ and CSMs’ platforms
- Implementation of adequate fraud monitoring systems; regarding the SCT Inst scheme, these systems should be able to perform real-time analysis and related actions, due to the instant characteristics of this scheme
- Secure connection from/to the originator and beneficiary devices (PCs, mobile phones) and the corresponding PSPs
- Use of Strong Customer Authentication (applicable to SCT and SCT Inst) with dynamic linking with Beneficiary identifier and transaction amount
- Promotion of security and data protection awareness, training and education wherever possible including warnings for phishing attacks, and encouragements to adopt security measures on the customer devices.
- Regarding SDD schemes (Core and B2B), the creditors should ensure the protection and authenticity of the mandate given by Debtors.

Other measures fall under the scope of supporting schemes such as SRTP or SPL. For example, among measures specific to the SRTP scheme, the following could be mentioned:

- RTP Service Providers, especially when these are not regulated entities (non-PSPs), should complete a proper homologation process as part of the scheme onboarding stage. Indeed,

45 SEPA Request-To-Pay (SRTP) Scheme Rulebook v1.0
PSPs should have certainty that the processed Requests-to-Pay are valid and originate from a legitimate scheme participant.

- Payees need to be legitimate and accepted as customer of SRTP Scheme participants upon completion of agreed customer authentication and identification procedures. Indeed, SRTP scheme participants (and ultimately payers) should have certainty that received Request-To-Pay (RTP) messages = are valid (i.e. created by a legitimate payee, contain valid payment-related data like amount/payee IBAN and represent a real business transaction).

4.2 Card Scheme

In the past, cards were a payment instrument with limited attack vectors, mainly in the brick-and-mortar world, but has now transformed into a scheme offering criminals a multitude of various fraud attack vectors. In general, the fraudster’s *modus operandi* is to obtain the physical payment card (or card data) and PIN for use in a face to face, Point of Sale (POS) or ATM environment. Alternatively, to obtain payment card data for use in an e-commerce or card not present (CNP) environment, such as Internet shopping, mail order, phone ordering, etc. − if the card supports this functionality. Lately, omni-channel fraud e.g. using stolen card information from social engineering in wearables and mobile devices in a POS environment has been increasing, as well as fraud cases where both SEPA-schemes and card payments are being interlinked and used as combined vehicles to move stolen funds and handle the exfiltration of crime gains.

Card fraud is on the rise, driven by increased customer demands for faster and easier payments. The adherence to regulations like PSD2 RTS on SCA ([2]), has changed the attack context and a trend to the adoption of social engineering attacks has been observed, as a way to circumvent the adoption of SCA. Below are the most common, as well as new, fraud trends within the card present and card not present space.

4.2.1 Card present

Card present fraud is a wide-ranging term relating to the theft and crimes committed using or involving a payment card, or other token with card details in physical POS terminals or ATMs. The purpose may be to obtain goods or services to resell for cash or to obtain funds directly from a related payment account, usually to pay for the criminal’s lifestyle or to fund more serious criminal activity.

Lost and stolen card fraud

Although, the genuine cardholder in most cases can notice lost and stolen card fraud easily and quickly, the trend continues and losses remain high. The impact of lost and stolen card fraud is still significant for consumers, for PSPs and financial institutions across Europe. Fraudsters consistently look at better and easier ways to capture PINs, e.g. using social engineering or shoulder surfing, and then stealing the payment card using one of various methods, often targeting the elderly or the uninformed. In this way, getting the card and the PIN to execute real payment transactions is often hard to detect. Heavier losses can be avoided by blocking the stolen card by the cardholder. Advice to cardholders by card issuers and public information with regard to the correct phone number supports this process.

Contactless payment cards are being increasingly accepted in stores. A lost or stolen card can be used for purchases as long as the cardholder authentication (PIN, CDCVM) is not required for a contactless transaction at POS terminals, but only up to a certain number of transactions and/or to a limited value. It is expected that there will be an increase in the theft of cards for this purpose, i.e. to purchase goods that can be easily resold for cash. ATM cash transaction always need an
cardholder authentication thus are not subject to this attack scenario. It is important that cardholders be advised to take care of their card and credentials at all times.

Another fraud type to consider is card-not-received fraud, that takes place when a criminal steals a payment card from an individual’s mailbox or in the mail delivery process, so the rightful owner never receives it. This type of fraud is only effective when the card is delivered in an active state. It should be noted that most card issuers issue inactive cards, that can only be activated by the genuine cardholder. By doing so, cards intercepted in the delivery process will be of little or no use to the attacker for card present transactions.

Cardholders are generally good at reporting their lost or stolen cards to their financial institution once they realise the card is missing however some wait too long before reporting the fact. The use of card security controls through bank apps, such as: blocking or temporarily blocking cards, limiting transactions types or limiting transaction amounts; have proven to be effective controls.

Account take over / Fraudulent cardholder application.

Fraudsters are using social engineering techniques such as doing visits to cardholders’ homes, approaching PSP staff or other methods, such as spear phishing, to obtain the data needed to take over an account or create a false cardholder application / request for a payment card or PIN.

Counterfeit and skimming

Copying magnetic-stripe track data at POS terminals and ATMs by skimming is still an active type of fraud in Europe. Protecting terminals from skimmers has proven to be challenging at most. Skimmers have evolved from classic external skimmers to non-metallic skimmers, stereo analogue skimmers, and lately to inlay and insert skimmers. PIN capture has been enabled through PIN pad overlays or through ever-smaller spy cameras.

Magnetic stripe cards cloned with the stolen card data may be used on terminals where EMV chip technology is not supported or required. While usage of such cloned magnetic-stripe payment card has limited possibility in the European area due to cards and terminals being secured with EMV Chip technology, globally this is still possible in countries where EMV has not yet been fully introduced, hence the cash-out is often performed outside of Europe.

Shimming – like skimming, is where the aim of the fraudster is to skim or ‘shim’ data from the EMV Chip on a payment card rather than from the magnetic stripe, using similar methods. Criminals can exploit this when issuers have implemented the EMV protocol incorrectly. This is very uncommon in Europe.

ATM fraud

Besides counterfeit cards, ATMs are also vulnerable for several other attack vectors, not limited to, but including physical attacks, malware/logical manipulation, black box attacks, jackpotting, card and cash trapping, etc. Black box attacks have observed a sharp rise in European ATMs in 2020 and it is expected that 2021 will follow through. For more insights on ATM-related fraud and attacks, please revert to the bi-annual report produced by EAST (European Association of Secure Transactions).

First party fraud (overdrafting credit limits)

Non-credit worthy people trying to get payment cards and banking accounts with the only purpose to overdraw the accounts / credit limits without any intention to pay back. The only interest is to overdraw to get cash and/or to purchase goods/services. Usually a weak KYC
procedure and too flexible card products provided to the customer with generous credit limits are causing first party fraud.

Merchant refund fraud

This fraud occurs when the fraudster, through different methods, hijacks an in-store card terminal and uses it to make refund purchases with stolen cards. To make sure the merchant has sufficient funds on their account, the fraudster often first makes purchases using stolen cards. They then cash out in ATMs immediately afterwards. The fraudster has knowledge about terminal functionality and can in some cases also have inside help at the targeted merchant. This type of *modus operandi* has, according to multiple sources e.g. Mastercard, been increasing during the Covid-19 pandemic, as the genuine flow of refunds has increased a lot due to cancelled services and events.

Shell companies and fake merchants

It has been noted that criminals set up fake, or buy existing non-active corporations, and use these to sign card acquiring agreements in order to accept card payments that will be later used to exfiltrate funds. These *modi operandi* are often complex and are performed in several steps, from setting up the corporation, acquiring info on the target, creating a good cover story for the social engineering to exiting with the crime gains.

4.2.2 Card not present (CNP)

Card not present fraud is a term relating to the theft and crimes committed using or involving payment card credentials for making authorized or unauthorized purchases in the e-commerce space, MOTO or other instances where the physical card is not involved in the process. The purpose may be to test the validity of the credentials, to obtain goods or services to resell for cash or to obtain funds directly from a related payment account.

Unauthorized card not present fraud

As the volume of payment card purchases made via the Internet continues to grow, so too do the attempts of Card Not Present (CNP) fraud. E-commerce is the preferred way to buy goods or services where the payment card is not physically present, and stores must rely on the cardholder information indirectly. Payment card details are obtained by fraudsters in various ways: by malware, data hacks, phishing or fake merchants stealing the information. This information is later sold on criminal marketplaces on Darknet/Deep Web, to be used by other fraudsters, or sometimes used by the bad actors stealing the credentials themselves. The modus operandi for committing the CNP-fraud is normally either through large volume automated algorithmic attacks on well-known e-commerce websites, trying to hide the fraudulent transactions in the vast volume of legitimate transactions, or by using the credentials more diligently for single high-amount purchases on selected merchants or merchant categories. A common modus operandi adopted by cybercriminals is to try to extrapolate card numbers, including expiry dates and sometimes also CVV. They then use those generated numbers for large scale BIN-range attacks and similar. Below are the most common ways for criminals to access card details.

Account Data Compromises

ADC attacks are targeted at specific stores, financial institutions, services providers or other sites holding valuable card- or customer information in their databases, with the aim to compromise the network or payment system and gain payment card data.

When independent, small merchants set up their own online stores, a lack of knowledge around fraud risks can mean preventative measures are overlooked, which can leave those merchants
open to greater risk of data hacking resulting in fraud. Hacking of large merchants continues to occur even though stores use protective measures. Criminals regularly find weaknesses and vulnerabilities.

In connection with the above, online tour operators are currently, and historically, responsible for a large part of the stolen card data. International booking sites represent the major part. Card data is stolen in transit or in data storage, and it results in various sorts of unauthorized CNP-fraud. One current trend is manually entered transactions in hotel environment and clean consumer goods (clothing). Many of these fraudulent purchases are made in Europe.

Although these attacks can occur on all payment systems there have been attacks against payment card issuers resulting in serious fraud losses. Payment cards with an almost infinite limit are issued by the fraudsters and intercepted, duplicated and distributed within their global fraud network. Attacks are organised and occur mainly during periods when fraud monitoring is at a low level, e.g. at night or during weekends. After penetrating a system, fraudsters can sometimes wait for months, ‘sleeping’ inside the system before completing their attack.

Card generation, testing and harvesting

The objective of this attack is for the criminal to acquire knowledge on the existence, status or other sensitive information related to accounts. For example, in a testing attack a malicious actor may try to test if a card PAN exists, test CVVs or expiry dates related to a certain PAN or try to inject any transaction with doctored fields to try to fool the authorisation system in accepting the transaction as valid.

These attacks can be performed through the transaction authorisation systems or through the ACS enrolment verification systems. Account testing attacks can harvest millions of card credentials if no fraud detection system is in place, with the capability to intercept transactions. Attacks have been detected where accounts are tested at great speeds (12 per second).

Testing the accounts can be performed on certain merchants that do not have mechanisms in place to detect these kinds of attacks and once the elements are all known, the attacker can perform high value transactions on unsuspecting merchants.

Simple Account Take Over

A cardholder enrols to a payment page on a merchant’s website who has a secure storage solution (PCI compliant or equivalent) of card data on file. The loading of card data on file occurs with or without 3DS. The access for making payments on the merchant site is sometimes through a simple cardholder ID and password, chosen by the cardholder. In this case a fraudster can find out about these credentials and subsequently make payments using the cardholder’s secured card-data-on-file, after possibly changing delivery address, service to be delivered etc.

Digital skimmers

Malicious code is increasingly being injected into websites catering for the payment process at various e-commerce merchants. The code can identify the card and customer credentials, provide them to the criminal and later resolve itself to avoid detection. The Magecart groups responsible for this are highly active and are behind several noticeable incidents.

Fake merchants

A huge source for stolen card credentials, is the increasing number of fake merchant websites that can offer anything from high end consumer goods to gift cards or freight deliveries. They often work through social media advertisement, phishing e-mails or text messages. Even if the card
holder’s authorised or not authorised card payment is declined by the issuer’s preventive measures, the actors behind the fake merchant still apprehend the customer and card credentials, to later be used for various fraudulent attempts.

Authorized fraud and scams

With more SCA solutions in place all over Europe, this type of card not present fraud is increasing and expected to increase even more as the related requirements of the PSD2 ([1]) and the RTS ([2]) legislation get implemented. Basically, the fraudster goes after the weak link in a SCA payment chain, which often is the human. You could normally split this modus operandi in two main tracks, both often initiated via some sort of phishing:

- **Identity theft.** The fraudster steals or tricks the victim to disclose their card/personal credentials/online banking verification methods and thereafter make the transaction, often to money mule accounts. Here we also have seen a recent problem with Global Wallets for contactless or e-commerce payments. If the card issuer does not have strong enough enrolment and card credential provisioning solutions, this service can become a vessel for social engineering fraudsters who download wallets into their own mobile devices and can perform fraudulent SCA-transactions. In many of these types of fraud the entry point towards the victim consists of different forms of phishing/vishing/smishing obtaining the online banking credentials and the exit of money is with card payments.

- **Authorised card transaction scams.** In this case the fraudster persuades the card holder to perform the transactions themselves, either by impersonating to be someone/something else or by selling fake services or goods. This fraud can be very devastating for the victim since they are not always refunded in view of unclear definitions of fraud and related liability. There is also often a personal shame in being scammed like this, hence the hidden number of victims can be big. Examples of authorised transactions fraud where card payments are used include investment fraud, romance fraud, phishing sms/e-mails leading to fake websites, fake purchases of goods turning into unwanted subscriptions, fake advertising for renting apartments etc. Recently, more elaborate spear phishing techniques has been seen to a greater extent, where the fraudster has spent time for background checks and in various ways create a more plausible story for the victim to believe when they are approached, e.g. pretending to be from the card issuer security department or the police.

Friendly / Family fraud

Increased “fraud” where for example a parent’s card is loaded in a Merchant Wallet as used “card on file” in different entertainment gaming sites -or apps. It is not clear when a new purchase or top up of coins / points etc takes place, neither for a child who is playing nor for the parent. Later on the parent (cardholder) becomes aware that payments have been made through the card / account for amounts a lot higher than one may have thought when the card was added. There is also an increasing problem with cardholders doing CNP purchases themselves, knowingly or unknowingly (could be under the influence of alcohol/drugs/addiction) and then disputing the transactions with their issuer.

4.2.3 **Suggested Controls and Mitigation**

For Merchants and acquirers:

- 3D Secure: security protocol to authenticate users for payment card transactions in card-not-present scenarios. 3DS version 2.x should be adopted given that the extra data passed
on from the merchant to the issuer will allow a risk-based authentication maintaining the transaction as frictionless as possible.

- Tokenisation: process of substituting sensitive data with a non-sensitive equivalent called token.
- Fraud monitoring. Deploy a responsive, real-time fraud system with prevention capabilities that identifies suspicious patterns of behaviour.
- Patch vulnerabilities and adopt recommendations Always use the latest recommended update and recommendations for the operational systems from service provider, card schemes, etc. Always patch systems when needed.
- Perform an annual risk assessment by your Risk and / or Fraud Departments to check if all mitigating measures are completely set and in control.
- Educate store employees how to identify and how to act when they suspect fraudulent behaviour in POS-environment. Make sure to have well working routines to alert and how to protect the cash register and card terminals.
- Store and process customer data according to PCI DSS standards (if the respective card scheme adheres to this standard). If possible, do not store card data in your own environment, rather let the payment gateway or service provider do that.
- Make sure that the customer onboarding process when signing new card terminal agreements, is robust and perform a diligent KYC to avoid bad actors getting into the system to be able to accept card payments for illicit purposes.

For Card Issuers:

- Geo-blocking: To protect payment cards from being misused by skimming fraud, it is strongly recommended to protect payment cards within a geographical region of use.
- Restrictions and blockings: To limit the usage of payment cards to specific channels or specific contexts according to the Issuer’s defined risk appetite.
- Offer virtual cards that will have lowered spending limits, shorter validity periods or restrictions on the merchants where they may be used.
- Strong Customer Authentication (SCA) with every aspect of payment card and PIN replacement.
- 3D Secure: security protocol to authenticate users for payment card transactions in card-not-present scenarios. 3DS version 2.x should be adopted given that the extra data passed on from the merchant to the issuer will allow a risk-based authentication maintaining the transaction as frictionless as possible.
- Card synchronisation in stand-in systems. Some stand-in systems have no knowledge of what cards exist and are active (they only know of the ranges of cards that they process) and therefore the capability to detect account testing attacks is greatly reduced so too is the capability to protect against brute force attacks.
- Non-sequential issuance of cards. Some issuers still issue cards in a sequential manner. Thus, all cards in a certain range will be valid and with the same expiry date. In order to reduce the level of success for an attacker to determine valid PANs and also in order to help fraud detection systems, PANs should be issued in a non-sequential fashion. By doing so, an attacker that sweeps through a range of PANs, will generate a high percentage of “Inexistent PAN” errors and ultimately be detected with greater ease.
• Card limits: Allow for easy access customer customisation of ATM withdrawal limits, daily spend, e-com environment and contactless functionality, possibility for temporary block in mobile bank app etc. Promote customer awareness on this.
• Transaction information: Inform your cardholders about authorised transactions in real time (could be SMS or push messages) to enable quick customer feedback.
• Perform an annual risk assessment to check if all mitigating measures are completely set and in control.
• Besides the technical measures, awareness-raising (customer education) is an essential point to prevent, more in particular, “low-tech” fraud.
• Work together, non-competitively, with other players and law enforcement agencies within your market to establish good communication lines and information sharing forums. Use these forums for mutual information sharing and raise awareness to customers.
• Make sure your Fraud and Chargeback team works closely together and with resources and tools available to identify the growing problem of friendly fraud.
• Within your local market, engage in working with others to develop standardised digital identification methods for safer e-com purchases and online access to bank account information.
• Make sure no credit limits can be overdrawn in any offline environment with your issued cards. Perform a diligent credit underwriting process.
• Make sure no offline limits can be reset by card holder actions to commit friendly fraud.
• Global Wallets – Employ an enrolment solution with Strong Customer Authentication to heavily reduce the risk of fraud.
• Fraud monitoring: Use a multi-layered approach from authentication to authorisation, which includes automatic customer interaction. Deploy a responsive, self-learning, real-time fraud system with prevention capabilities and risk scoring. Ensure your fraud system identifies suspicious patterns of behaviour to stop fraud based on both generic and tailor-made scenarios and rules.
• Deploy mechanisms and intelligence designed to proactively identify breached, leaked and skimmed card credentials with the purpose of taking action such as card exchange or dedicated monitoring on specific at-risk cards.

For Cardholders:
• Always keep your payment card in a safe place and protect your PIN. Report immediately to your card issuer, if the payment card goes missing.
• Do not give away your personal information or codes to your identification method if you do not initiate the event yourself.
• If a financial institution offers controls on limits and e-com and contactless functionality for the payment card, ensure you set these at the settings typical for your daily usage.
• If your financial institution offers geo-blocking, set the correct geographical region of use and adjust it on time for your convenience.
• Always check with your card issuer first if you receive suspicious information or requests via SMS/mail/telephone to initiate a log-in procedure or approve a transfer. The issuer never requests the cardholder to do that. Fraudsters typically press on the urgency for the victim to act fast, which is also not how banks and issuers communicate.
• Avoid to store your card credentials “on file” at an e-commerce merchant. But if not, make sure that you understand what type of payments can be made, and who is able to initiate a payment with your card.

• Always stop and challenge if a social media advertisement is too good, an offer seems very lucrative or if someone tries to talk you into investing in a once in a lifetime opportunity. Check with your issuer or bank first and talk with a family member or friend to assess the situation in a calm way.

4.3 Mobile Wallets

A mobile wallet is a service accessed through a mobile device, which allows the wallet holder to securely access, manage and use a variety of services/applications including payments, identification and non-payment applications. This service may reside on a mobile device owned by the consumer (i.e. the holder of the wallet) or may be remotely hosted on a secured server (or a combination thereof) or on a merchant website. Typically, the so-called mobile wallet issuer provides the wallet functionalities, but the usage of the mobile wallet is under the control of the consumer and his mobile device. Mobile wallets are frequently used for m-commerce.

Innovations in mobile payment options facilitate adoption of the technology by consumers and businesses, but also increase the interest of fraudsters to steal money, payment card information or history of operations.

Mobile wallets like all other payment types are exposed to the generic payment process relevant attacks mentioned in Section 3. There use cases may include contactless and card-not-present in-app e-commerce payments, but may also be based upon prepaid accounts or cover for person-to-person payments. By the fact that implementations are typically all virtual, mobile wallets supporting card payments generally leverage some type of card tokenization and with this also take advantage of the security add-ons that tokenization offers over physical cards. Nevertheless, mobile wallets also introduce new threats and third-party dependencies worth taking a closer look in this section.

Mobile wallet specific threats

In order to best possibly leverage today’s mobile user experience and mobile device support for biometric authentication, card schemes encourage wallet providers to support Consumer Device Cardholder Verification Methods (CDCVM) instead of traditional CVMs like PIN@PoS (Point of Sale) or signature.

What this means from an ecosystem perspective is that

(i) terminals cannot work offline anymore with cards proposing CD CVM in contactless transactions (there is no plastic card anymore to support classical CVMs)
(ii) card credentials cannot be protected by certified payment chips anymore (there is no payment chip as those wallets exist only virtually on a mobile phone or server)
(iii) issuers cannot authorise transactions on the basis of a PIN securely entered at a POS anymore (as PIN entry and verification are substituted by CD CVM on the mobile device).

In summary mobile wallets thus come with a significant increase in user experience at the cost of a new ecosystem setup, in which Original Equipment Manufacturers (OEMs) and wallet providers often take over a large part of the security set-up without taking over its associated liability.

As a matter of fact, security largely differs between mobile device types and wallets. CD CVM credentials may be biometric, possession- or knowledge-based and card keys or tokens may be
hardware or software protected. Moreover, mobile wallets may confirm a successful CD CVM based authentication to the card or token issuer on the basis of a device being unlocked at the time of payment initiation or may require an on-purpose validation of a device unlock credential or a wallet-specific authentication means.

Specific threats in the mobile wallet and CD CVM space include targeted attacks on mobile device key stores, unlock credentials, user interfaces and NFC controllers. All of these may get exposed through malware leveraging privilege escalation or rooting / jail-breaking exploits. Although mobile devices come with inherent security like secure boot and app signing and sandboxing, drive-by privilege escalations attacks keep on being reported across all operating systems.

Particularly worth mentioning in the mobile wallet space are **NFC relay attacks**, whereby a card on the cardholder mobile device can relatively easy get exposed to contactless payments on a fraudster device. But also other **mobile device interface attacks**, in which a fraudulent app remotely exposes the mobile device user interfaces (display and/or touch input) or tricks a user in submitting his device’s unlock credentials for a fake purpose (e.g. fingerprint for health checking) pose new threats. While there is relatively little evidence about NFC relay attacks happening in the wild, interface attacks have been observed at various levels. An illustrative example for remote exposure of user interfaces is the accessibility interface attack formerly observed against a well-known payment processor\(^\text{46}\) but also the very recent new attacks by the Vultur RAT\(^\text{47}\). Worth mentioning are also **physical attacks against biometric authentication implementations**, be it through copying fingerprints from the touchscreen or exploiting biometric sensor implementation weaknesses\(^\text{48}\).

For a high-level coverage of mobile application user, mobile device and digital wallet application threats, the ENISA report from 2016 on the 'Security of Mobile Payments and Digital Wallets\(^\text{49}\) still remains a good reference, listing the following threat categories:

- Phishing and social engineering
- Installation of rogue applications and malware
- Unauthorized access to lost or stolen mobile device
- Malware installation on the device
- Reverse engineering of the application source code
- Tampering with the mobile payment application
- Exploit of mobile payment application vulnerabilities
- Installation of rootkits/malware
- Mobile Operating System Access Permissions

4.3.1 Suggested Controls and Mitigation

Segregation mechanisms like Trusted Execution Environments (TEE) but also privilege escalation detection and remediation mechanisms like root-kit detection or secure device boot today represent inherent mobile platform security features that together with regular OS updating lay a strong security foundation for mobile wallet implementation. However, as they regularly also

\(^\text{48}\) https://www.computing.co.uk/news/3082909/natwest-nationwide-samsung-fingerprint

show exploitable software bugs and network providers at some point in time block OS updates for older devices, the security of CD CVM must independently be assured.

Last year publications by EMVCo\(^5\) cover for both 'CD CVM best practices' and 'CD CVM security requirements'. While the security requirements document comes with a very comprehensive risk analysis and specific CD CVM attacks and countermeasures, the best practice document states the following general security-related recommendations that give a good insight to the challenges encountered and worth controlling in this rapidly growing third-party dependency space:

- Do not set a dormant value (factory-set default Reference Data) for a CD CVM Solution
- Warn the user when prompting for consumer authentication if the device is not in the appropriate secure state.
- Prolonged authentication should not extend beyond a reasonable period of time.
- If the conditions for persistence are broken, then re-authentication must be performed.
- The number of incorrect CD CVM attempts should be limited.
- Do not allow weak CD CVMs
- Manage the lifecycle of a CD CVM appropriately
- Biometric modalities should not allow the registration of too many of those same modalities.
- The platform should provide a means for a Mobile Application to determine whether a suitable level of consumer authentication is active for the device.
- The fall-back/primary CD CVM should be sufficiently strong.
- For a biometric, there should be a balance between allowing the verification of the incorrect biometric and not verifying the correct biometric.
- There should be a mechanism for liveness detection and the ability to spoof the solution should be minimised.

To support these objectives, EMVCo has established a Security Evaluation Process to help ensure CD CVM solutions maintain certain minimum levels of security, including mechanisms and protections designed to withstand known attacks.

5 Conclusions
The main attack focus over the past year has continued to be the trend of shifting away from malware to social engineering attacks. Social engineering attacks, phishing and vishing attempts are still increasing and they remain instrumental often in combination with malware. Whereas in the past consumers, retailers and SMEs had been the main focus, the last year more and more company executives, employees (through CEO fraud), financial institutions and payment infrastructures appear to become preferred targets.

Malware remains a major threat but more particularly ransomware has become the top cyber threat faced by European cybercrime investigators. This type of attack appears to be more profitable to the attackers than the traditional banking Trojans. It is not possible to achieve full protection to not be hit by a malware attack. However, raising awareness campaigns with a few simple advices to customers to mitigate malware attacks (software updates, anti-malware tools, do not click on links, etc.), is one of the best tools to mitigate the risks and their impact. Similar awareness must be in place for the employees of PSPs.

One of the most lucrative types of payment fraud now and for the future seems to be Advanced Persistent Threats (APTs). It must be considered as a potential high risk not only for the payment infrastructures but also for large customers, including merchants.

The number of (D)DoS attacks remains high and they are still frequently targeting the financial sector and have impacts on the availability of their services to customers.

There is a continuation of botnets and because of the high volume of infected consumer devices (e.g., PCs, mobile devices, etc.) severe threats remain. Besides an ever-increasing level of professionalism among the attackers whereby addresses of infected computers, routers or bots are sold or rented, the usage of IoT devices (such as CCTVs) for launching DDoS attacks have continued to be noted. It is expected that the usage of these devices to launch attacks will further increase over the years to come.

Mobility is part of both consumers’ and enterprises’ daily life and operation. Smart mobile devices have become commonplace in Europe enabling a wide variety of mobile apps, including payment apps (see Section 4.3). As a result, they are more and more becoming an attractive target for cybercriminals and fraudsters.

The need for reducing operational costs and the huge and rapidly growing amount of data lead to new business decisions for adopting cloud and big data analytics technologies. Data everywhere, “data in flight”, data produced and stored in billions of interconnected devices, data in the cloud, and new technologies are bringing new opportunities to businesses but new risks too.

There is also a competitive market drive for user-friendliness and simplicity which leads to increased pressure on security resources and difficult trade-offs to be made by PSPs. The challenge will be to find the right balance between the user-friendliness and the security measures needed. As security becomes more regulated (PSD2 [1] and the RTS [2], NIS Directive [3], GDPR [4]), payments also face a new regulatory landscape in Europe, which on one hand increases the security barrier with respect to fraud (e.g. strong customer authentication) but at the same time also "opens up" the payment value chain which introduces new security challenges for all stakeholders involved.

Concerning card payment fraud, as long as mag-stripe is still largely usable in some countries, counterfeit fraud will remain an issue, and also gets further refined in its technique, potentially with the goal of successful and effective shimming or contactless skimming. Meanwhile in the POS space, low-tech fraud like lost and stolen, sometimes combined with forms of social engineering,
is also going strong, and now represents a high fraud cost for card issuers in some EU countries. Unauthorised CNP fraud remains a huge problem and main fraud cost driver. Due to criminals engaging in high tech activities like APTs and other breaches where card credentials are stored, there is no shortage of stolen credentials for sale at online marketplaces. However, with high-end preventive methods and regulations like PSD2 [1] and the RTS [2] with its requirement for SCA, criminals are changing their approach towards instead utilising various phishing and social engineering techniques to perform fully authenticated CNP transactions, either themselves or scam the victims to unknowingly perform them. It is also key that the security of new products, e.g. mobile wallets, is being designed with that in mind. That being said, to combat fraud, it is of utmost importance, that all PSPs and merchants use the extended grace period granted by the EBA during 2020 (see[5]) to fully comply with the SCA regulatory requirements.

For SEPA Credit Transfer and Direct Debit transactions, the criminals’ use of impersonation and deception scams, as well as online attacks to compromise data, continued to be an important factor behind fraud losses related to these types of payments. In all these methods, criminals target personal and financial details which are used to facilitate fraudulent transactions. More in particular during the past year an increase was noted in Authorised Push Payment fraud (see Section 3.3).

An important aspect to mitigate the risks and reduce the fraud related to payments is the sharing of fraud intelligence and information on incidents amongst PSPs. However, often this is being limited by rules and regulations related to data protection, even more so in the case of cross-border sharing. It is to be expected that the new EBA guidelines on fraud reporting ([6]) will support an improved information sharing and the availability of more accurate fraud figures.

It is also worthwhile mentioning that the EPC has established a new group on fraud prevention related to the EPC-managed SEPA payment schemes, namely the Payment Scheme Fraud Prevention Working Group (PSFPWG). The aim is to contribute to operational payment fraud prevention by facilitating SEPA payment scheme fraud data collection and analysis, information sharing and prevention measures.

Finally, PSPs must understand the emerging threats, the possible impacts and should keep investing in appropriate security and monitoring technologies as well as in customer awareness campaigns while society should cater for early education on security and social engineering risks.

Social Engineering: Final Considerations/Conclusions

Social engineering remains an important attack factor which is further increasing – notably in relation to APP fraud.

- Business email compromise and phishing emails are forms of social engineering that have been particularly developed.
- It is often used as an enabler for other types of attacks and is applied in the mobile world as well.
- Appropriate education about social engineering remains a crucial factor to combat both phishing and APP scams.
- Technical measures such as securing the email platforms and blocking the phishing websites are also important in combating social engineering.
Malware: Final Considerations/Conclusions

Malware is a major threat that can cause significant damage on both companies and individuals. All stakeholders involved in payment processes should take appropriate mitigation measures.

- Consumers should make sure that their devices, including mobile devices, are always well protected and they should follow the awareness campaigns provided by the authorities and the PSPs on this matter.
- Customer relations departments of PSPs should well inform their customers on maintaining their devices up to date with security software to reduce the malware related risk.
- Service providers or PSPs internal IT departments should implement necessary technical measures protecting their platforms against this type of attacks.
- If cloud services are used, the PSPs must identify and evaluate the relevant assets, define the appropriate security controls, evaluate and choose the cloud providers on the basis of international standards for governance and security.

APT: Final Considerations/Conclusions

One of the most lucrative payment fraud forms now and for the future seems to be APT. APTs have become a significant challenge for many cybersecurity professionals around the world.

- It must be considered as a potential high risk for the payment infrastructure and for all network related ecosystems.
- With a minimal of criminals involved, a maximum result can be established. Therefore, all users will need to consider utilizing new defence mechanisms in order to protect their data.
- A mixed approach made of traditional tools, new advanced behaviour-based detection solutions with improved automated monitoring, correlation and analysis, and improved incident response capabilities can aid system security administrators in identifying these hard-to-detect intrusions.

DoS: Final Considerations/Conclusions

(D)DoS attacks have been an increasing threat in the past few years, given the fact that the number of infected end points available and the size of attack are increasing. The expected future, and already seen in some countries, is that more sophisticated combined attacks will take place. A further development could be that a successful (D)DoS attack could distract the PSP’s attention from fraudulent transactions, leading to more “successes” for criminals with phishing and/or malware attacks on Internet banking.

The probability of these attacks continuing in the near future is high (e.g., in view of the increased usage of IoT devices) and financial and payments sector organisations remain potential targets.

- Measures to mitigate the basic kind of (D)DoS attack should be common – and seem to be common – to all financial institutions.
- Furthermore, it should be evaluated whether the current security architecture and countermeasures are still sufficient.
- Collaboration is critical for effective DDoS mitigation and making the financial sector more resilient. On a national level this would mean that PSPs, universities, internet service providers, internet exchanges, responsible governmental cyber authorities, and the national central bank need to work together. To reduce the number of DDoS attacks the
(national) police force has to be involved as well by exchanging information, collecting evidence, intervening in payments to DDoS-as-a-service suppliers and so on.

Botnets: Final Considerations/Conclusions

As a result of the evolutions that botnets made, they have been very successful in 2020, and will probably continue so in the following years. The growth of the IoT ecosystem and with no end in sight for the relaxed security they inherently have, will be a fruitful area for exploit.

In respect to payment threats the use of botnets for DDoS will continue to be a relevant threat but keeping in mind that financial gain for the attackers is mainly obtained through extortion or similar techniques. It seems that botnet DDoS may achieve more advantageous gains extorting other time dependent activities (e.g. events) or through other extortion-based attacks (e.g. ransomware).

Account verification attacks and payment credential compromise, at the European level, will be mitigated by the adoption of Strong Customer Authentication as required under PSD2 [1]. Compromising knowledge factors on a compromised system has historically been a reasonably achievable task for malware. Compromising two factors of different natures and usage of dynamic linking will elevate the bar for the attacker to be successful.

It is foreseeable that botnets will tend to be potentiated for other malicious activity not directly related to payments, given the recently increased measures through PSD2 compliance.

- The measures to combat botnet threats and the effects of related attacks are applicable to infrastructures, software development and IoT devices covering both home and small business and enterprise systems installation.

Monetisation Channels: Final Considerations/Conclusions

Payment fraud often leverage monetisation channels such as: cash withdrawal, no traceable purchase, money transfer, transactions with anonymous virtual currencies.

PSPs should take appropriate measures against money-mule related fraud, such as:

- Raise Awareness among target groups of customers that can involuntarily become mule.
- Register/ share identified mules by monitoring suspect accounts or bank changes of customers who potentially can become mules, to detect this behaviour at a very early stage.
- Regulators and PSPs should consider having mechanisms in place to react and stop supporting service practices or to put related transactions on hold, until further investigated, if transaction patterns indicate potential "mule activity".
- Develop mechanisms and analysis to detect complex mule and money laundering schemes, on a cooperative and cross-border basis.
Annex I – Summary Threats versus Controls and Mitigations

<table>
<thead>
<tr>
<th>Threat</th>
<th>Suggested Controls & Mitigations</th>
</tr>
</thead>
</table>
| Social Engineering | Awareness campaigns for consumers, SMEs and corporates, and for PSPs staff
 | Technical measures for email security (SPF, DKIM, DMARC)
 | Use of authentication mechanisms that do not expose user credentials
 | Transaction filtering and monitoring
 | Takedown of phishing web sites
 | **Applicable to the following payment-relevant processes:**
 | - On-boarding/provisioning
 | - Invoicing/Request-to-Pay
 | - Initiation/Authentication
 | - Execution |
| Malware | Regular software updates on consumer devices including mobile devices
 | Firewalls and antivirus on consumer devices
 | Information campaigns by PSPs customer relations departments, including awareness about danger of opening attachments
 | Script and macro blockers, IPS / IDS functionality
 | Limited usage of admin rights
 | Web traffic and email content analysis
 | Specific controls and mitigation measures targeting Cloud services
 | **Applicable to the following payment-relevant processes:**
 | - On-boarding/provisioning
 | - Invoicing/Request-to-Pay
 | - Initiation/Authentication
 | - Execution |
| Advanced Persistent Threats | Behaviour analysis tools
 | Real time advanced security data analytics
 | Incorporation of security threat intelligence into infrastructure
 | Advanced IP scanner/ APT scanner
 | Red Team/Blue Team approach
 | Five styles of Advanced Threat Defense Framework |
| | **Applicable to the following payment-relevant processes:**
 | - Execution |
| Denial of Service | Dynamic DDoS security control framework
| | DDoS mitigation scrubbing service
| | Periodic tests of anti DDoS measures
| | Security intelligence feeds and incident response team
| | “Forensic ready” logging
| **Section 2.4** |
| **Applicable to the following payment-relevant processes:** |
| | • Execution |
| Botnets | Blacklisting
| **Section 2.5** | Sinkholing and blocking
| | Distribution of fake/traceable credentials
| | DNS-based countermeasures
| | Direct takedown of C&C server
| | Packet filtering on network and application level
| | Walled gardens
| | Peer-to-peer countermeasures
| | Infiltration and remote disinfection
| | Take downs by law enforcement
| | Awareness raising and co-operation |
| **Applicable to the following payment-relevant processes:** |
| | • Execution |
| Monetisation Channels | Raise awareness
| **Section 2.6** | Register/ share information about identified mules
| | Monitor, detect and stop mule-like behaviour at PSP and regulator level
| | Detect complex mule and money laundering schemes

| **Table 6 Summary threats versus controls and mitigations** |